GROUND-BASED LiDAR Rock Slope Mapping and Assessment

Publication No. FHWA-CFL/TD-08-006

September 2008

U.S. Department of Transportation

Federal Highway Administration

Central Federal Lands Highway Division 12300 West Dakota Avenue Lakewood, CO 80228

FOREWORD

The Federal Lands Highway (FLH) of the Federal Highway Administration (FHWA) promotes development and deployment of applied research and technology applicable to solving transportation related issues on Federal Lands. The FLH provides technology delivery, innovative solutions, recommended best practices, and related information and knowledge sharing to Federal agencies, Tribal governments, and other offices within the FHWA.

The FLH has an interest in using new technology to assist in designing and constructing roads more efficiently. One emerging three-dimensional mapping technology is terrestrial or ground-based LiDAR. LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", employs a laser and a rotating mirror or housing to rapidly scan and image volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-made objects. Ground-based or terrestrial LiDAR refers to tripod-based measurements, as opposed to airborne LiDAR measurements made from airplanes or helicopters.

This project shows how the new technology of ground-based LiDAR could assist FHWA with highway rock slope stability. Site characterization for rock slope stability involves the collection of geotechnical data, and in the current practice, much of this data is collected by hand directly at exposed highway slopes and rock outcrops. There are many issues with the collection of this data in the field, including issues of safety, slope access, and human bias. It is shown in this report that some of the most important types of geotechnical information for rock slope stability can be acquired using LiDAR at a safe distance from the slope. In many cases, this information can also be automatically extracted from LiDAR point clouds using currently available point cloud processing software, reducing human bias issues. This report concludes that indeed there are benefits available when ground-based LiDAR is employed.

F. David Zanetell, P.E., Director of Project Delivery Federal Highway Administration Central Federal Lands Highway Division

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The FHWA provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-CFL/TD-08-006 2. Government Accession No. 3. Recipient's Catalog No. 4. Tute and Subilite 5. Report Date September 2008 Ground-Based LiDAR Rock Slope Mapping and Assessment 6. Performing Organization Code 7. Authoris) 8. Performing Organization Rode Dr. John Kemeny, University of Arizona Dr. Keith Turner, Colorado School of Mines 10. Work Unit No. (TRAIS) University of Arizona, Building 12, Room 229 11. Contrast or Grant No. Department of Mining and Geological Engineering Tucson, AZ 85721 10. Work Unit No. (TRAIS) 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Federal Highway Administration Final Report Central Federal Lands Highway Division September 2005 – March 2007 12.300 W. Dakota Avenue, Suite 210 Lakewood, Co 80228 15. Supplementary Notes CO 7R: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lat Highway Technology beployment Initiatives and Partnership Program (TDIPP.) 16 Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three- dimensional mapping technology that employs a laser and a rotating mirror o		Technical Report I	Documentation Page		
4. Title and Subitite 5. Report Date Ground-Based LiDAR September 2008 Rock Slope Mapping and Assessment 6. Performing Organization Report No. 7. Author(s) 8. Performing Organization Name and Address 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Arizona, Building 12, Room 229 11. Contract or Grant No. Department of Mining and Geological Engineering 11. Contract or Grant No. Tucson, AZ 85721 11. Contract or Grant No. DTFH68-05-X-00041 2. September 2005 12. Sponsoring Agency Name and Address Final Report Federal Highway Administration Final Report Central Federal Lands Highway Division 2. September 2005 12.300 W. Dakota Avenue, Suite 210 Lakewood, CO 80228 Uristing Agency Manistration Final Report COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surghelmentary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surghelmentary Nets Cort statistic Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surghelmentary Nets Cort statistic Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roge	1. Report No. FHWA-CFL/TD-08-006	2. Government Accession	No. 3. Re	cipient's Catalog No.	
Ground-Based LiDAR Rock Slope Mapping and Assessment September 2008 7. Author(s) 6. Performing Organization Code 7. Author(s) 8. Performing Organization Rode Dr. Keith Turner, Colorado School of Mines 9. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Arizona, Building 12, Room 229 11. Contract or Grant No. Department of Mining and Geological Engineering 11. Contract or Grant No. Tueson, AZ 85721 DTFH68-05-X-00041 12. Sponsofing Agency Name and Address 13. Type of Roport and Period Covered Federal Lands Highway Division September 2005 – March 2007 12300 W. Dakota Avenue, Suite 210 14. Sponsoring Agency Code Lakewood, CO 80228 HFTS-16.4 15. Suppelementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Sott Anderson, FHWA-FLH. This project was funded under the Federal Lard Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three- dimensional mapping technology that employsa laser and a rotating mirror or housing to rapidy scan a	4. Title and Subtitle		5. Rep	oort Date	
Ground-Based LiDAR 6. Performing Organization Code Rock Slope Mapping and Assessment 6. Performing Organization Report No. Dr. John Kemeny, University of Arizona 8. Performing Organization Report No. Dr. Keith Turner, Colorado School of Mines 10. Work Unit No. (TRAIS) University of Arizona, Building 12, Room 229 10. Work Unit No. (TRAIS) Uperatruent of Mining and Geological Engineering 11. Contract or Grant No. Tueson, AZ 85721 DTFH68-05-X-0041 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Federal Highway Administration September 2005 – March 2007 12300 W. Dakota Avenue, Suite 210 14. Sponsoring Agency Ode Lakewood, CO 80228 HFTS-16.4 15. Supplementary Notes COTR: Just Henwood, FHWA-CFLHD, Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-YELHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lan Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and soft or terrestrial LiDAR refers to tripod-based measurements, as opposed to airborne LiI measurements made from airplanes or helicopters. The purpose of thi			Septe	ember 2008	
Rock Slope Mapping and Assessment 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Dr. John Kerneny, University of Arizona 8. Performing Organization Report No. Dr. John Kerneny, University of Arizona, Building 12, Room 229 10. Work Unit No. (TRAIS) University of Arizona, Building 12, Room 229 11. Contract or Grant No. Department of Mining and Geological Engineering 11. Contract or Grant No. Tueson, AZ 85721 DTFH68-05-X-00041 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Central Federal Lands Highway Division September 2005 – March 2007 12.300 W. Dakota Avenue, Suite 210 14. Sponsoring Agency Code HETS-16.4 13. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD, Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger COTR: Justin Henwood, FHWA-CFLHD, and Sott Anderson, FHWA-FLH. This project was funded under the Federal Lar Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and sufficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-n object	Ground-Based LiDAR				
7. Author(s) 8. Performing Organization Report No. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Arizona, Building 12, Room 229 11. Contract or Grant No. Department of Mining and Geological Engineering 11. Contract or Grant No. 7. September 2005 - March 2007 13. Type of Report and Period Covered Final Report 2. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report 12. Supporting Agency Name and Address 13. Type of Report and Period Covered Final Report 12.300 W. Dakota Avenue, Suite 210 14. Sponsoring Agency Code HerTS-16.4 17. Supplementary Notes 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lan Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-objects. Ground-based or terrestrial LIDAR refers to tripod-based measurements, as opposed to ainborne Lif measurements made from airplanes	Rock Slope Mapping and Assessment		6. Per	forming Organization	Code
7. Author(s) 8. Performing Organization Report No. Dr. John Kerneny, University of Arizona 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Arizona, Building 12, Room 229 11. Contract or Grant No. DTFH68-05-X-00041 Department of Mining and Geological Engineering 11. Contract or Grant No. DTFH68-05-X-00041 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Federal Highway Administration September 2005 – March 2007 14. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Federal Highway Administration September 2005 – March 2007 14. Sponsoring Agency Code HFTS-16.4 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD, Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lan Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and mannolytects. Ground-based tiDAR for therestate of LiDAR for highway geote				0 0	
Dr. John Kemeny, University of Arizona Intervent Colorado School of Mines Dr. Keith Turner, Colorado School of Mines Intervent Colorado School of Mines 9. Performing Organization Name and Address Intervent Colorado School of Mines University of Arizona, Building 12, Room 229 Department of Mining and Geological Engineering Tueson, AZ 85721 DTFH68-05-X-00041 12. Sponsoring Agency Name and Address Final Report Central Federal Lands Highway Division September 2005 – March 2007 12.300 W. Dakota Avenue, Suite 210 Ha Sponsoring Agency Code Lakewood, CO 80228 HFTS-16.4 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lat Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three- dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and sufficial areas such as rock slopes and outcrops, buildings, bridges and other natural an man- technology of ground-based LiDAR could assist FHWA with highway rock slope stability. This report includ	7. Author(s)		8. Per	forming Organization I	Report No.
Dr. Keith Turner, Colorado School of Mines 9. Performing Organization Name and Address University of Arizona, Building 12, Room 229 Department of Mining and Geological Engineering Tueson, AZ 85721 11. Contract or Grant No. Tueson, AZ 85721 12. Sponsoring Agency Name and Address Federal Highway Administration Central Federal Lands Highway Division 12300 W. Dakota Avenue, Suite 210 Lakewood, CO 80228 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lat Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-nobjects. Ground-based LiDAR refers to tripod-based measurements, as opposed to airborne LiI measurements made from airplanes or helicopters. The purpose of this report was to determine whether the r technology of ground-based LiDAR could assist FHWA with highway rock slope stability. This report includ discussions of currently available LiDAR hardware and software. the curre	Dr. John Kemeny, University of Arizona				
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Arizona, Building 12, Room 229 11. Contract or Grant No. Department of Mining and Geological Engineering 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Federal Highway Administration 13. Type of Report and Period Covered Central Federal Lands Highway Division 13. Type of Report and Period Covered 12300 W. Dakota Avenue, Suite 210 14. Sponsoring Agency Sumplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lat Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three- dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man- volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man- volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man- volumes and surficial areas such as rock slopes tability. This report	Dr. Keith Turner, Colorado School	of Mines			
University of Arizona, Building 12, Room 229 Department of Mining and Geological Engineering Tucson, AZ 85721 DTFH68-05-X-00041 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Federal Highway Administration September 2005 – March 2007 12.300 W. Dakota Avenue, Suite 210 13. Type of Report and Period Covered HTTS-16.4 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lare Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-objects. Ground-based LiDAR refers to tripod-based to airborne Li measurements made from airplanes or helicopters. The purpose of this report was to determine whether the r technology of ground-based LiDAR near stower, the current state of LiDAR for highway rock slope stability. This report includ discussions of currently available LiDAR hardware and software, the current state of LiDAR for highway geotechnical applications (rock mass characterization, rockfall characterization, ros-built 3D measurements), spacing and block size. In many cases, this information about rock discontinuity orientation, rounghness, length, spacing and block size. In ma	9. Performing Organization Name and Addr	ess	10. W	ork Unit No. (TRAIS)	
Department of Mining and Geological Engineering 11. Contract or Grant No. Tueson, AZ 85721 DTFH68-05-X-00041 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Federal Highway Administration September 2005 – March 2007 Cantral Federal Lands Highway Division September 2005 – March 2007 12300 W. Dakota Avenue, Suite 210 H: Sponsoring Agency Code Lakewood, CO 80228 HFTS-16.4 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lat Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-nojects. Ground-based LiDAR could assist FHWA with highway rock slopes to airborne Lin geotechnical applications (rock mass characterization, no-chuit discussions of currently available LiDAR nerver and asoftware, the current state of LiDAR for highway geotechnical applications (rock mass characterization, rockall characterization, as-built 3D measurements), practices for field scanning and for point cloud data processing, and expected trends in the industry in the ne future. It is shown in this repo	University of Arizona, Building 12	Room 229			
Tucson, AZ 85721 DTFH68-05-X-00041 12. Sponsoring Agency Name and Address I3. Type of Report and Period Covered Federal Highway Administration I3. Type of Report and Period Covered Central Federal Lands Highway Division September 2005 – March 2007 12300 W. Dakota Avenue, Suite 210 HS Sponsoring Agency Code Lakewood, CO 80228 HFTS-16.4 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lat Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three- dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-m objects. Ground-based or terrestrial LiDAR refers to tripod-based measurements, as opposed to airborne LiI measurements made from airplanes or helicopters. The purpose of this report was to determine whether the r tucture, It is shown in this report Has to some of the most important types of geotechnical information for rock stability. This report includ discussions of currently available LiDAR hardware and software, the current state of LiDAR for highway geotechnical applications (rock mass characterization, rockfall characterization	Department of Mining and Geologi	cal Engineering	11. Co	ontract or Grant No.	
12. Sponsoring Agency Name and Address [13. Type of Report and Period Covered Final Report Federal Highway Administration [13. Type of Report and Period Covered Final Report Central Federal Lands Highway Division [14. Sponsoring Agency Code 12.300 W. Dakota Avenue, Suite 210 [15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lark Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and mann-n objects. Ground-based or terrestrial LiDAR refers to tripod-based measurements, as opposed to airborne LiI measurements made from airplanes or helicopters. The purpose of this report was to determine whether the rechnology of ground-based LiDAR hardware and software, the current state of LiDAR for highway geotechnical applications (rock mass characterization, rockfall characterization, as-built 3D measurements), practices for field scanning and for point cloud data processing, and expected trends in the industry in the nefuture. It is shown in this report that some of the most important types of geotechnical information for rock is stability that is currently being collected by hand can be acquired from LiDAR point clouds and associated digital images. This includes detailed information about rock discontinuity orientation, roughness, length, spacing and	Tucson, AZ 85721		DTF	H68-05-X-00041	
Federal Highway Administration Final Report Central Federal Lands Highway Division September 2005 – March 2007 12300 W. Dakota Avenue, Suite 210 Id. Sponsoring Agency Code Lakewood, CO 80228 HFTS-16.4 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lan Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-nobjects. Ground-based or terrestrial LiDAR refers to tripod-based measurements, as opposed to airborne LiT measurements made from airplanes or helicopters. The purpose of this report was to determine whether ther the rethenology of ground-based LiDAR nould asistis FHWA with highway rock slope stability. This report inclue discussions of currently available LiDAR hardware and software, the current state of LiDAR for highway geotechnical applications (rock mass characterization, area-shuilt 3D measurements), practices for field scanning and for point cloud data processing, and expected trends in the industry in the ne future. It is shown in this report that some of the most important types of geotechnical information for rock as stability that is currently being collected by hand can be acquired from LiDAR point clouds and associated digital images. This includes detaile	12. Sponsoring Agency Name and Address		13. Ty	pe of Report and Perio	d Covered
Central Federal Lands Highway Division September 2005 – March 2007 12300 W. Dakota Avenue, Suite 210 H. Sponsoring Agency Code Lakewood, CO 80228 HFTS-16.4 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lar Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three- dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and sufficial areas such as rock slopes and outcrops, buildings, bridges and other natural and mann-nobjects. Ground-based from airplanes or helicopters. The purpose of this report was to determine whether the r technology of ground-based LiDAR collar Arefers to tripod-based measurements, as opposed to airborne LiI measurements made from airplanes or helicopters. The purpose of this report was to determine whether ther technology of ground-based liDAR collar hardware and software, the current state of LiDAR for highway geotechnical applications (rock mass characterization, rockfall characterization, ar-built 3D measurements), practices for field scanning and for point cloud data processing, and expected trends in the industry in the ne future. It is shown in this report that some of the most important types of geotechnic	Federal Highway Administration		Final	Report	1 2005
12300 W. Dakota Avenue, Suite 210 14. Sponsoring Agency Code Lakewood, CO 80228 HFTS-16.4 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lar Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three- dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man- objects. Ground-based or terrestrial LiDAR refers to tripod-based measurements, as opposed to airborne LiI measurements made from airplanes or helicopters. The purpose of this report was to determine whether the retechnology of ground-based LiDAR could assist FHWA with highway rock slope stability. This report include discussions of currently available LiDAR hardware and software, the current state of LiDAR for highway geotechnical applications (rock mass characterization, rockfall characterization, as-built 3D measurements), practices for field scanning and for point cloud data processing, and expected trends in the industry in the net future. It is shown in this report that some of the most important types of geotechnical information for rock stability that is currently being collected by hand can be acquired from LiDAR point clouds and associated digital images. This includes detailed information about rock discontinuity orientation, roughness, length, spacing and block	Central Federal Lands Highway Dr	vision	Septe	ember 2005 – Mar	ch 2007
Lakewood, CO 80228 HFTS-16.4 15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lar Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-objects. Ground-based or terrestrial LiDAR refers to tripod-based measurements, as opposed to airborne LiI measurements made from airplanes or helicopters. The purpose of this report was to determine whether then te technology of ground-based LiDAR could assist FHWA with highway rock slope stability. This report inclu discussions of currently available LiDAR hardware and software, the current state of LiDAR for highway geotechnical applications (rock mass characterization, rockfall characterization, as-built 3D measurements), practices for field scanning and for point cloud data processing, and expected trends in the industry in the ne future. It is shown in this report that some of the most important types of geotechnical information for rock is stability that is currently being collected by hand can be acquired from LiDAR point clouds and associated digital images. This includes detailed information about rock discontinuity orientation, roughness, length, spacing and block size. In many cases, this information can be automatically acquired using currently availal point cloud processing software. There are advantages to using LiDAR for collecting this information, inclu improved safety, accuracy, slope access, and speed of analys	12300 W. Dakota Avenue, Suite 21	0	14. Sp	onsoring Agency Code	2
15. Supplementary Notes COTR: Justin Henwood, FHWA-CFLHD. Advisory Panel Members: Alan Blair, Matt DeMarco, and Roger Surdahl, FHWA-CFLHD; and Scott Anderson, FHWA-FLH. This project was funded under the Federal Lat Highway Technology Deployment Initiatives and Partnership Program (TDIPP.) 16. Abstract LiDAR (Light Detection and Ranging), also often referred to as "3D laser scanning", is an emerging three- dimensional mapping technology that employs a laser and a rotating mirror or housing to rapidly scan and in volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-n objects. Ground-based or terrestrial LiDAR refers to tripod-based measurements, as opposed to airborne LiD measurements made from airplanes or helicopters. The purpose of this report was to determine whether the retenhology of ground-based LiDAR could assist FHWA with highway rock slope stability. This report inclue discussions of currently available LiDAR hardware and software, the current state of LiDAR for highway geotechnical applications (rock mass characterization, rockfall characterization, as-built 3D measurements), practices for field scanning and for point cloud data processing, and expected trends in the industry in the ne future. It is shown in this report that some of the most important types of geotechnical information for rock stability that is currently being collected by hand can be acquired from LiDAR point clouds and associated digital images. This includes detailed information can be automatically acquired using currently availa point cloud processing software. There are advantages to using LiDAR for collecting this information, inclu improved safety, accuracy, slope access, and speed of analysis. It is recommended that LiDAR be utilized for future highway slope stability projects	Lakewood, CO 80228		HFT	S-16.4	
geotechnical applications (rock mass characterization, rockfall characterization, as-built 3D measurements), practices for field scanning and for point cloud data processing, and expected trends in the industry in the ner future. It is shown in this report that some of the most important types of geotechnical information for rock s stability that is currently being collected by hand can be acquired from LiDAR point clouds and associated digital images. This includes detailed information about rock discontinuity orientation, roughness, length, spacing and block size. In many cases, this information can be automatically acquired using currently availa point cloud processing software. There are advantages to using LiDAR for collecting this information, inclu improved safety, accuracy, slope access, and speed of analysis. It is recommended that LiDAR be utilized for future highway slope stability projects.18. Distribution Statement17. Key Words18. Distribution Statement17. Key Words18. Distribution Statement19. Security Classif. (of this report) Unclassified20. Security Classif. (of this page) Unclassified21. No. of Pages 114	Surdahl, FHWA-CFLHD; and Scot Highway Technology Deployment 16. Abstract LiDAR (Light Detection and Rangi dimensional mapping technology th volumes and surficial areas such as objects. Ground-based or terrestria measurements made from airplaness technology of ground-based LiDAF discussions of currently available L	ng), also often referred at employs a laser an rock slopes and outc LiDAR refers to trip or helicopters. The p could assist FHWA	ct to as "3D laser scan d to as "3D laser scan d a rotating mirror or h rops, buildings, bridges od-based measuremen urpose of this report w with highway rock slo software, the current st	ning", is an emerge nousing to rapidly s and other natural tts, as opposed to a ras to determine where pe stability. This r ate of LiDAR for l	ing three- scan and image and man-made irborne LiDAR hether the new eport includes highway
17. Key Words 18. Distribution Statement LiDAR, SLOPE STABILITY, ROCK No restriction. This document is available to the public from the sponsoring agency at the website http://www.cfilhd.gov . 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price 114	practices for field scanning and for future. It is shown in this report tha stability that is currently being colle digital images. This includes detail spacing and block size. In many ca point cloud processing software. T improved safety, accuracy, slope ac future highway slope stability proje	point cloud data proc tt some of the most in ected by hand can be ed information about ses, this information here are advantages to cess, and speed of an cts.	essing, and expected to portant types of geote acquired from LiDAR rock discontinuity orig can be automatically ac o using LiDAR for col alysis. It is recommen	ends in the industrict chnical information point clouds and a entation, roughness cquired using curred lecting this inform ded that LiDAR b	ry in the near on for rock slope ssociated s, length, ently available ation, including e utilized for
LiDAR, SLOPE STABILITY, ROCK No restriction. This document is available to the public from the sponsoring agency at the website. MASS CHARACTERIZATION, DISCONTINUITY, 3D, LASER DISCONTINUITY, 3D, LASER http://www.cflhd.gov. 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 114 22. Price	17. Key Words		18. Distribution Statement		
19. Security Classif. (of this report) Unclassified20. Security Classif. (of this page) Unclassified21. No. of Pages 11422. Price	LiDAR, SLOPE STABILITY, ROCK MASS CHARACTERIZATION, DISCONTINUITY, 3D, LASER SCANNING, ROCKFALL		No restriction. Th public from the sp <u>http://www.cflhd.</u>	is document is ava onsoring agency a gov.	ailable to the t the website
	19. Security Classif. (of this report) Unclassified	20. Security Classif. Uno	(of this page) classified	21. No. of Pages 114	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

		SI* (MODERN METRIC) CONVERSION FACTORS			
APPROXIMATE CONVERSIONS TO SI UNITS					
Symbol	When You Know	Multiply By	To Find	Symbol	
		LENGTH			
in	inches	25.4	Millimeters	mm	
ft	feet	0.305	Meters	m	
yd	yards	0.914	Meters	m	
mi	miles	1.61	Kilometers	km	
		AREA		2	
in ²	square inches	645.2	Square millimeters	mm²	
ft ²	square feet	0.093	Square meters	m ²	
yd-	square yard	0.836	Square meters	m-	
ac mi ²	acres	0.405	Heclares Square kilometers	na km ²	
	square miles		Square kilometers	NIII	
floz	fluid ounces	29.57	Millilitors	ml	
nal	allons	3 785	Liters		
ff ³	cubic feet	0.028	cubic meters	m ³	
vd ³	cubic vards	0.765	cubic meters	m ³	
	NOTE: vo	lumes greater than 1000 L	shall be shown in m ³		
		MASS			
oz	ounces	28.35	Grams	q	
lb	pounds	0.454	Kilograms	kg	
Т	short tons (2000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")	
	TE	MPERATURE (exa	ct degrees)		
°F	Fahrenheit	5 (F-32)/9	Celsius	°C	
		or (F-32)/1.8			
		ILLUMINATIO	ON		
fc	foot-candles	10.76	Lux	lx	
fl	foot-Lamberts	3.426	candela/m ²	cd/m ²	
	FOF	RCE and PRESSURI	E or STRESS		
lbf	poundforce	4.45	Newtons	Ν	
lbf/in ²	poundforce per square inch	6.89	Kilopascals	kPa	
	APPROXIM	ATE CONVERSIO	NS FROM SI UNITS		
Symbol	APPROXIM When You Know	ATE CONVERSIO Multiply By	NS FROM SI UNITS To Find	Symbol	
Symbol	APPROXIM When You Know	ATE CONVERSIO Multiply By LENGTH	NS FROM SI UNITS To Find	Symbol	
Symbol	APPROXIM When You Know millimeters	ATE CONVERSIO Multiply By LENGTH 0.039	NS FROM SI UNITS To Find	Symbol	
Symbol mm m	APPROXIM When You Know millimeters meters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28	NS FROM SI UNITS To Find	Symbol in ft	
Symbol mm m m	APPROXIM When You Know millimeters meters meters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09	NS FROM SI UNITS To Find	Symbol in ft yd	
Symbol mm m m km	APPROXIM When You Know millimeters meters meters kilometers	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621	Inches Feet Yards Miles	Symbol in ft yd mi	
Symbol mm m km	APPROXIM When You Know millimeters meters meters kilometers	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	Inches Feet Yards Miles	Symbol in ft yd mi	
Symbol mm m km mm ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 0.0016	Inches Feet Yards Miles square inches	Symbol in ft yd mi in ² c ²	
Symbol mm m km mm ² m ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 105	Inches Feet Yards Miles square inches square feet	Symbol in ft yd mi in ² ft ²	
Symbol mm m km mm ² m ² m ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	Inches Feet Yards Miles square inches square feet square yards	Symbol in ft yd mi in ² ft ² yd ²	
Symbol mm m m km m ² m ² ha km ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	Inches Feet Yards Miles square inches square feet square yards Acres square miles	Symbol in ft yd mi in ² ft ² yd ² ac m ²	
Symbol mm m km mm ² m ² ha km ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles	Symbol in ft yd mi in ² ft ² yd ² ac mi ²	
Symbol mm m km mm ² m ² ha km ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	Inches Feet Yards Miles square inches square feet square yards Acres square miles	Symbol in ft yd mi in ² ft ² yd ² ac mi ²	
Symbol mm m km km mm ² m ² ha km ² ha	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallage	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz	
Symbol mm m km km m ² m ² ha km ² ha km ² mL L m ³	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic feet	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³	APPROXIM When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards Ounces Pounds	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb	
Symbol mm m km km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t")	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards Ounces Pounds short tons (2000 lb)	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t")	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters cubic meters meters cubic meters cubic meters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (example: Mathefaller	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards Ounces Pounds short tons (2000 lb) ct degrees)	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t")	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact 1.8C+32	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards Ounces Pounds short tons (2000 lb) ct degrees) Fahrenheit	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters megagrams (or "metric ton") Celsius	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact 1.8C+32 ILLUMINATIC	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards Ounces Pounds short tons (2000 lb) ct degrees) Fahrenheit	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton") Celsius	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact 1.8C+32 ILLUMINATIC 0.0929	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards Ounces Pounds short tons (2000 lb) ct degrees) Fahrenheit DN foot-candles	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc	
Symbol mm m km m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton") Celsius	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact 1.8C+32 ILLUMINATIC 0.0929 0.2919	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards Ounces Pounds short tons (2000 lb) ct degrees) Fahrenheit DN foot-candles foot-Lamberts	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl	
Symbol mm m km m ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton") Celsius	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact 1.8C+32 ILLUMINATIC 0.0929 0.2919 RCE and PRESSURI	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards Ounces Pounds short tons (2000 lb) ct degrees) Fahrenheit DN foot-candles foot-Lamberts E or STRESS	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl	
Symbol mm m km mm ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ² N	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters free cubic meters free celsius	ATE CONVERSIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact 1.8C+32 ILLUMINATIC 0.0929 0.2919 RCE and PRESSURI 0.225	NS FROM SI UNITS To Find Inches Feet Yards Miles square inches square feet square yards Acres square miles fluid ounces Gallons cubic feet cubic yards Ounces Pounds short tons (2000 lb) ct degrees) Fahrenheit DN foot-candles foot-Lamberts E or STRESS Poundforce	Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl lbf	

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

TABLE OF CONTENTS

CHAPTER 1 – INTRODUCTION AND BACKGROUND	1
CHAPTER 2 - LIDAR HARDWARE	
HOW 3D LASER SCANNERS WORK	
THE POINT CLOUD	
MANUFACTURES AND PRODUCT SPECIFICATIONS	
PRICE	
SCANNING PROCEDURES	
CHAPTER 3 – POINT CLOUD PROCESSING SOFTWARE	9
THE POINT CLOUD FILE	9
POINT CLOUD REGISTRATION	
POINT CLOUD PROCESSING SOFTWARE	
INTEROPERABILITY WITH CADD SOFTWARE	
INTEROPERABILITY WITH SLOPE STABILITY SOFTWARE	12
Export Individual Fracture Information	13
Export Fracture Set Information	13
Export Rock Mass Strength and Modulus	13
CHAPTER 4 – LIDAR APPLICATIONS TO ROCK SLOPES	15
ROCK MASS CHARACTERIZATION	15
Discontinuity Orientation	15
Discontinuity Roughness	23
Fracture Length and Spacing	27
Block Size	
Discontinuity Weathering and Fill	29
ROCKFALL CHARACTERIZATION	
Characterizing Rockfall Source Areas	
Rockfall Chutes	
Rockfall Monitoring	
DETAILED 3D MEASUREMENTS	42
CHAPTER 5 – BEST PRACTICES	43
BEST PRACTICES IN THE FIELD	43
Deciding on Scanner Placement and Number of Scans	43
Deciding on the Method for Scanner Registration	45
Scanner Field of View and Point Spacing	45
Taking Digital Images	47
Field Notes	
DATA PROCESSING BEST PRACTICES	
Data Management	
Point Cloud Stitching	
Extracting Rock Mass Characterization Information	
THE COST OF A LIDAR SURVEY	49

THE ACCURACY OF LIDAR-GENERATED DATA	50
Instrument accuracy and field settings	50
Point cloud registration errors	51
Software and procedures used for processing point clouds	51
A COMPARISON OF LIDAR AND PHOTOGRAMMETRY	51
CHAPTER 6 – EXPECTED ADVANCES IN THE NEXT 5 YEARS	55
HARDWARE IMPROVEMENTS	55
MULTI-SENSOR FUSION	55
MOBILE SCANNING	56
3D MASHUPS	57
IMPROVEMENTS IN POINT CLOUD PROCESSING SOFTWARE	57
STANDARDIZED DATA FORMATS	57
CHAPTER 7 – CONCLUSIONS AND RECOMMENDATIONS	59
CONCLUSIONS	59
Automatic data acquisition over entire slope	59
Remote data acquisition for improved safety	59
Rapid data collection	59
New technologies for data collection and processing easy to learn	
and operate	60
Able to provide a high-resolution 3D Digital Terrain Model (DTM)	
of a highway slope or rock outcrop that could be compared with	
future DTMs as the slope ages and deteriorates	60
Cost Effective	60
Overall Conclusions	60
RECOMMENDATIONS	61
Field Scanning	61
Point Cloud Processing Software	61
Additional Recommended Studies	61
Comparing Scanner Registration Methods	61
"Start to Finish" Case Study for Rock Slope Stability	62
Extracting Additional Information From LiDAR Point Clouds	62
6	
REFERENCES	63
APPENDIX A – SPECIFICATIONS OF CURRENT LIDAR HARDWARE	67
	07
AFFENDIA D - SPECIFICATIONS OF CUKKENT LIDAK SOFTWAKE	83
APPENDIX C – SPLIT FX BEST PRACTICES	101

LIST OF FIGURES

Figure 1a. Schematic. Point cloud of a rock face along Mt. Lemmon Highway, Arizona	4
Figure 1b. Schematic. Color point cloud of a rock face near San Juan, Argentina	5
Figure 2. Photo. Examples of ground-based LiDAR scanners (time-of-flight unless	
noted otherwise, photos from 2006 models)	6
Figure 3. Photo. Scanning with the Leica ScanStation at Milepost 15 on	
Mt. Lemmon Highway. Point cloud shown in the lower right photo.	8
Figure 4a. Photo. Field site that was scanned using ground-based LiDAR	16
Figure 4b. Schematic. Point cloud for the field site shown in Figure 4a	16
Figure 4c. Schematic. Triangulated mesh for point cloud shown in Figure 4b	17
Figure 4d. Schematic. Automatic delineation of fractures for the point cloud	
in Figure 4b.	17
Figure 4e. Plot. Stereonet plot of fractures from Figure 4d.	18
Figure 5. Photo and Schematic. Scan on Mt. Lemmon Highway. Comparison	
of LiDAR generated data (black stereonet) with hand measurements	
(white stereonet)	19
Figure 6a. Photo. Step 1 in photo draping procedure, insert pins on digital image	21
Figure 6b. Photo. Step 2 in photo draping procedure, align pins on point cloud	
to the same position as in digital image	21
Figure 6c. Photo. Step 3 in photo draping procedure, delineate fracture traces	
on the digital image	22
Figure 6d. Photo. Step 4 in photo draping procedure, three dimensional	
fracture orientations extracted from the traces	22
Figure 7. Schematics. One method of analyzing fracture roughness using LiDAR	
data, by making a triangulated mesh of a fracture and plotting the pole	
for each triangle on a stereonet.	23
Figure 8a. Photo. Location of two large fractures for determination of maximum	
dilatation angle using the method described in Figure 7.	24
Figure 8b. Chart. Contoured stereonet of poles of each mesh triangle in left	
fracture shown in Figure 8a.	25
Figure 8c. Chart. Contoured stereonet of poles of each mesh triangle in right	
fracture shown in Figure 8a.	25
Figure 9. Schematic. A second method of analyzing fracture roughness, by making	
topographic profiles of the fracture in different directions, and processing the	•
roughness profile to extract roughness parameters such as JRC.	26
Figure 10. Photo and Schematic. Information on fracture length and spacing can be	
extracted from both a) point clouds, and b) digital images	27
Figure 11. Schematic. Persistent vs. non-persistent discontinuities (black lines).	
a) persistent discontinuities, with a single scanline (red) to obtain fracture	
spacing information, b) non-persistent discontinuities, with multiple scanlines (green)	
used to obtain fracture spacing information	28
Figure 12. Photos. a) digital image with the proper density of fracture information,	
b) figure cannot be analyzed at its current scale (close-up image needed to	•
provide appropriate level of detail)	28

Figure 13. Photos. Manual methods of getting block size information, both from	
a) point cloud and from b) digital image.	29
Figure 14. Photos. Example of digital images of a) unweathered, and b) weathered	
discontinuities.	30
Figure 15. Photos. Section of Glenwood Canyon a) before, and b) after the 2004	
Thanksgiving Day rockfall.	31
Figure 16. Photo. Weathering of a slope near Pine Valley, California, exposing	
boulders that pose a rockfall hazard	32
Figure 17a. Photo. Rockfall chute, north side of Interstate 70 near	
Georgetown, Colorado	33
Figure 17b. Schematic. Side view of point cloud taken of site shown in Figure 17a	34
Figure 17c. Schematic. Plan view of point cloud showing the location of two	
cross sections.	
Figure 17d. Schematic. Section A (refer to Figure 17c).	36
Figure 17e. Schematic. Section B (refer to Figure 17c).	36
Figure 17f. Photo. Close-up photo of center section of chute.	37
Figure 17g. Schematics. Close up views of point cloud showing rockfall fences	37
Figure 18. Photo. Slope above the north side of Interstate 70 near Georgetown	
showing a small rockfall chute containing several large rock blocks	38
Figure 19. Photos and Schematic. Rockfall study area along Interstate 70 near	
Georgetown, Colorado. Top photo shows rockfall source and chute characterization,	
from CDOT (2007). Lower photo shows permanent	
benchmarks set up along bike path	39
Figure 20a. Photo. Field site for testing change detection algorithms. Boulders marked	
with red circles were moved.	40
Figure 20b. Schematic. Difference point cloud. Red indicates negative change (missing	
material), blue indicates positive change (new material).	41
Figure 21. Photo. Rockfall Fence Containing an Overflow of Rock Fragments	42
Figure 22. Schematic. Parameters used in many Rockfall Hazard Rating systems (left).	
Example of point cloud to estimate many of these parameters (right).	42
Figure 23. Schematic. Figures on left show cross sections with recommended scanning	
distances depending on the height of the slope of interest. Figure on right shows plan	
view with recommended distances between scanning locations.	44
Figure 24. Schematic. Point cloud example. Plan view of scan of Mt. Lemmon Highway,	
Milepost 15. Proper scan window shown in green, unsuitable scanned highway slopes	5
shown in red.	46
Figure 25. Schematic. Point cloud example. Ideal point cloud with a point spacing of	
about 1.5 cm (yellow ruler showing 1.85 meters).	47
Figure 26. Screen Capture. Recommended Split FX settings for mesh generator,	
patch finder, and stereonet plotting, for a scan of Mt. Lemmon Highway near	
Milepost 8.	98
Figure 27. Schematics. Comparison between plotting poles with (left) and without	
(center) "weight-by-area". Weighting by area results in a much better comparison with	h
standard fracture mapping (right).	99
standard fracture mapping (fight).	

LIST OF TABLES

Table 1. Specifications for ILRIS-3D and HDS6000 scanners (from POB, 2008)	6
Table 2. 2008 LiDAR Hardware Summary Sets 1 to 5 (Point of Beginning website)	67
Table 3. 2008 LiDAR Hardware Summary Sets 6 to 10 (Point of Beginning website)	69
Table 4. 2008 LiDAR Hardware Summary Sets 11 to 15 (Point of Beginning website)	72
Table 5. 2008 LiDAR Hardware Summary Sets 16 to 20 (Point of Beginning website)	74
Table 6. 2008 LiDAR Hardware Summary Sets 21 to 25 (Point of Beginning website)	76
Table 7. 2008 LiDAR Hardware Summary Set 26 (Point of Beginning website)	79
Table 8. 2008 LiDAR Hardware Summary Survey Notes (Point of Beginning website)	81
Table 9. 2008 LiDAR Software Summary Sets 1 to 5 (Point of Beginning website)	83
Table 10. 2008 LiDAR Software Summary Sets 6 to 10 (Point of Beginning website)	86
Table 11. 2008 LiDAR Software Summary Sets 11 to 15 (Point of Beginning website)	89
Table 12. 2008 LiDAR Software Summary Sets 16 to 20 (Point of Beginning website)	92
Table 13. 2008 LiDAR Software Summary Sets 21 to 22 (Point of Beginning website)	95
Table 14. 2008 LiDAR Software Summary Survey Notes (Point of Beginning website)	97

ACKNOWLEDGEMENTS

The Principal Investigators and authors on this work, Dr. John Kemeny from the University of Arizona and Dr. Keith Turner from the Colorado School of Mines would like to recognize the efforts of several students who participated in this study, including:

- Undergraduate students Brianna Muhlenkamp and Gwynneth Smith, who completed their senior design project on the Mt. Lemmon Highway near milepost 15, comparing LiDAR with traditional methods for rock mass characterization.
- Mehul Patel, a graduate student investigating interoperability between point cloud software and CAD software such as Bentley Microstation and Autodesk AutoCAD.

Also noted with appreciation is Mr. Justin Henwood, P.E., who was the FHWA-CFLHD's Contracting Officer's Technical Representative (COTR) for this work. This report also benefited from the review provided by the FHWA's Technical Advisory Panel members of Scott Anderson, Alan Blair, Matt Demarco, and Roger Surdahl.

This project was funded under the FHWA's Federal Lands Highway Technology Deployment Initiatives and Partnership Program (TDIPP).

CHAPTER 1 – INTRODUCTION AND BACKGROUND

Ensuring rock slope stability is a major safety goal along highways. Rock slope instability can occur in many forms, including rapid large-scale rock instability, rockfall, and time-dependent slope degradation and failure. Unstable rock slopes pose a safety hazard that results in accidents and fatalities along U.S. highways every year (Badger and Lowell, 1992; Schuster and Fleming, 1986). Unstable slopes also require costly ongoing maintenance and design improvements such as the installation of rockfall barriers to mitigate rockfall or highway realignments to avoid major unstable rock slopes.

Site characterization is required initially to determine the potential for highway slope instability and to engineer appropriate mitigation methods, which can include catch basins, rockfall fences, ground support, drainage systems, rock sheds, tunnels, etc. Site characterization is also periodically required over the life of the highway because changes in the stability of rock slopes can occur as highway slopes weather and deteriorate. Rock mass site characterization involves the collection of geotechnical data, including information about rock structure, geology, intact rock strength, hydrology, climate, and earthquakes. (Priest, 1993, Hudson and Harrison, 2000). In the current practice, much of this data is collected by hand directly at exposed highway slopes and rock outcrops, including measurements of discontinuity orientation, roughness, fill, length, and spacing. There are many issues with the collection of data in the field, including:

- Safety hazards associated with the collection of this data
- Difficulties in accessing rock outcrops on large slopes or cliffs
- Human bias and accuracy issues associated with selecting areas for measurement and the accuracy of the hand-collected measurements themselves
- Relatively slow data collection and manpower intensive
- Because of the issue above, slope stability calculations with relatively small data sets
- The lack of three dimensional information about the slope (other than surveyed points) that could be used for comparison as slopes weather and deteriorate

To address these issues, new technologies are needed that provide the following benefits:

- Automatic data acquisition over entire slope
- Remote data acquisition for improved safety
- Rapid data collection
- New technologies for data collection and processing easy to learn and operate
- Able to provide a high-resolution 3D Digital Terrain Model (DTM) of a highway slope or rock outcrop that could be compared with future DTMs as the slope ages and deteriorates
- Cost effective

The purpose of this report was to determine whether the new technology of ground-based LiDAR (Light Detection and Ranging) could assist FHWA with highway rock slope stability as described in the list above. LiDAR, also often referred to as "3D laser scanning", is an emerging three-dimensional mapping technology that employs a laser and a rotating mirror or housing to

rapidly scan and image volumes and surficial areas such as rock slopes and outcrops, buildings, bridges and other natural and man-made objects. Ground-based or terrestrial LiDAR refers to tripod-based measurements, as opposed to airborne LiDAR measurements made from airplanes or helicopters.

The output from ground-based LiDAR is a point cloud consisting of millions of laser distance measurements representing the three-dimensional scanned scene. The point clouds are then processed to extract geotechnical information, which includes discontinuity orientation, length, spacing, roughness, and block size. High-resolution digital images are also taken of the scanned scene, and these images can be "draped" onto the point cloud using texture-mapping techniques (Blythe, 1999) to provide a 3D color DTM of the scanned scene. Additional geological and geotechnical information can be extracted from the DTM that would be difficult to observe in the point cloud.

The primary goals of this 18-month study were to:

- 1. Investigate LiDAR hardware currently available for highway rock slope stability;
- 2. Investigate point cloud processing software currently available for highway rock slope stability;
- 3. Evaluate the current state of the technology for providing useful benefits (as discussed in the list above) and compare with other technologies such as photogrammetry;
- 4. Identify best-practices to be used when conducting field scanning, and also when using software for processing data;
- 5. Recommend standards for using LiDAR in highway rock slope stability projects; and
- 6. Investigate likely improvements in LiDAR hardware and software in the next few years.

The list above roughly correlates with the chapters to follow. Chapter 2 of this report provides an overview of LiDAR hardware, and the basic procedure involved in conducting a LiDAR scan in the field. Chapter 3 describes the software used in processing data from LiDAR scans, including point cloud processing software and the interoperability with CADD and other highway design software packages. Chapter 4 describes the primary highway geotechnical applications for LiDAR, including rock mass characterization, rockfall, and detailed 3D surveying. It also includes a section on the accuracy of LiDAR-generated data, and a section comparing LiDAR with ground-based photogrammetry. In Chapter 5, the "best practices" for conducting LiDAR surveys in the field and processing the data are given, based on experiences in a number of different rock and engineering environments in the past several years. Chapter 6 discusses expected advances in LiDAR hardware and software in the next five or so years. Finally, conclusions and recommendations are presented in Chapter 7.

This report concludes that indeed there are benefits available when ground-based LiDAR is employed.

CHAPTER 2 - LIDAR HARDWARE

HOW 3D LASER SCANNERS WORK

3D laser scanners work by emitting light and detecting the reflection of the light in order to accurately determine the distance to the reflected object. Rather than making a single measurement as in a laser rangefinder, 3D laser scanners have rotating mirrors (or the entire unit rotates) that allow millions of measurements to be made over a scene in just a few seconds or minutes (depending on the type of scanner).

There are two primary types of 3D laser scanners: time-of-flight scanners and phase-shift scanners. Time-of-flight laser scanners emit a pulse of laser light that is reflected off the scanned object. A sensor measures the time of flight for the optical pulse to travel to and from the reflected surface. The distance the pulse traveled is then calculated using the following equation.

Distance = (Speed of Light * Time of Flight)/2 (1)

Some time-of-flight scanners have the ability to measure several arrival times for an emitted pulse. In a scan of a slope with vegetation, for example, the "first arrival" would indicate the distance to the top of the vegetation, and the "last arrival" would indicate the distance to the ground surface.

In phase-shift scanners, a laser beam with sinusoidally modulated optical power is emitted and reflected off an object. The reflected light is then detected and compared with the emitted light to determine the phase shift. The time of flight can then be determined from the following equation:

Time of Flight = Phase Shift / $(2\pi * Modulation Frequency)$ (2)

The values calculated by Equation 2 are then substituted into Equation 1 to find the distance. Multiple modulation frequencies are often used to increase the accuracy of the time-of-flight determination.

THE POINT CLOUD

Immediately after one pulse is received and measured, the scanner transmits another optical pulse slightly horizontal (or vertical – depending on the scanner) to the previous pulse using a rotating mirror. This process is repeated thousands of times per second, thus generating distance values for millions of points on a reflected surface. From the distance and the orientation of the laser pulse, the xyz coordinates associated with each reflected pulse can be determined. In addition, the intensity of the returned pulse is determined. In general, light colored objects and closer objects give a higher reflection compared with darker objects and objects farther away. Together, the xyz coordinates and associated intensity values for millions of data points

outputted by the laser make up the "point cloud". An example of a point cloud of a rock face along the Mt. Lemmon Highway in southern Arizona is shown in Figure 1a. This point cloud has about one million points. Also, it has a photographic quality because of the intensity values, that is, light objects are brighter than darker objects. A color point cloud can also be produced by associating color information from a digital image with the location of each point. An example of a color point cloud is shown in Figure 1b.

Figure 1a. Schematic. Point cloud of a rock face along Mt. Lemmon Highway, Arizona.

Figure 1b. Schematic. Color point cloud of a rock face near San Juan, Argentina.

MANUFACTURES AND PRODUCT SPECIFICATIONS

At the current time, there are a number of ground-based LiDAR manufacturers making scanners suitable for highway rock slope stability investigations. These included:

- Optech (<u>www.optech.ca</u>)
- Trimble (<u>www.trimble.com</u>)
- Leica Geosystems (<u>www.leica-geosystems.com</u>)
- Riegl (<u>www.riegl.com</u>)
- Faro (<u>www.faro.com</u>)
- Isite (<u>www.isite3d.com</u>)
- Zoller+Fröhlich (<u>www.zofre.de</u>)
- InteliSum (<u>www.rappidmapper.net</u>)

There are other scanners that are not listed because the range is not suitable for rock slope investigations (less than 10 meters). A complete list of terrestrial scanners is given in Appendix A. Several of these scanners are shown in Figure 2.

Figure 2. Photo. Examples of ground-based LiDAR scanners (time-of-flight unless noted otherwise, photos from 2006 models).

A complete list of specifications on currently available 3D laser scanners is given in Appendix A (from POB, 2008). Example specifications for the Optech ILRIS 3D time-of-flight scanner and the Leica HDS6000 phase-shift scanner are given in Table 1 below.

Davamatar	Optec ILRIS 3D	Leica HDS6000		
Parameter	(time of flight)	(phase shift)		
Wavelength	1550 nm	650, 690 nm		
Minimum range	3 m	0.1 m		
Maximum ranga	1500 m at 80%	79 m at 90%		
Maximum range	reflectivity	reflectivity		
Average data	2500 points per	125,000 points per		
acquisition rate	second	second		
Beam diameter	29 mm @ 100 m	8 mm @ 25 m		
Distance accuracy	7 mm @ 100 m	4 mm @ 25 m		
Position accuracy	8 mm @ 100 m	6 mm @ 25 m		
Angular accuracy	0.00115 degrees	0.0071 degrees		
Scanner weight	13 kg not including	14 kg including		
	batteries	batteries		
Distance and position ac	Distance and position accuracies are ± 1 sigma (68% confidence level)			

Table 1. Specifications for ILRIS-3D and HDS6000 scanners (from POB, 2008).

Table 1 points out some of the differences between time-of-flight and phase shift scanners. The time-of-flight scanners are capable of a much larger range compared with the phase shift scanners. Thus time-of-flight scanners would be preferred for large highway slopes and cliffs, while phase shift scanners would be preferred for small underground tunnels, for example. Also, the phase shift scanners have a much higher average data acquisition rate compared with the time-of-flight scanners. In terms of distance and position accuracies, the phase shift scanners have a slightly higher accuracy compared with the time-of-flight scanners. Both types of scanners are portable but, the phase shift scanners are lighter. When comparing weights note that the batteries are usually included in the phase-shift scanner unit, while the external batteries in the time-of-flight scanners can add at least 10 kg (22 lb) to the weight of the time of flight scanners.

PRICE

3D laser scanners range in price from \$70,000 to over \$150,000 (based on 2008 prices). Alternatives to purchasing a new scanner include buying a used scanner or renting a scanner on a daily or weekly basis. Distributors for the purchase of new scanners can be found on the LiDAR manufactures web sites. A good source for used scanners is the classified section of the Spar Point Research web site (<u>http://sparllc.com/classifieds.php</u>). Companies that rent scanners include surveying companies as well s the LiDAR manufacturers.

SCANNING PROCEDURES

A brief overview of the procedures for scanning a highway slope or natural rock outcrop is given below. Note that additional details on these steps are given in the "best practices" section of Chapter 5. Figure 3 illustrates some of the basic steps involved in field scanning.

- 1. The scanner is placed at the outcrop of interest, at a safe distance from moving cars and steep cliffs. The scanner does not need to be level; however, leveling the scanner simplifies the scanner registration process.
- 2. The manufacturer's software is used to set the scanner field of view and the LiDAR point spacing, using either a laptop computer or a handheld device.
- 3. A method for survey control is established (scanner registration). Methods include placing surveyed targets in the scene as shown in Figure 3, establishing the location and orientation of the scanner, back sighting to known points, and other methods.
- 4. Scanning is conducted. With a time-of-flight scanner this generally requires 5-25 minutes per scan to produce a point cloud with one to three million points. A phase-shift scanner would require less than 30 seconds for a point cloud with one to three million points.

Figure 3. Photo. Scanning with the Leica ScanStation at Milepost 15 on Mt. Lemmon Highway. Point cloud shown in the lower right photo.

- 5. Digital images are taken. High-resolution digital images accompany each LiDAR scan. Most scanners automatically capture the images using a built in camera. Some cameras are mounted on the inside of the scanner, some are mounted on the outside. By knowing the position of the camera relative to the laser and the camera characteristics, a color point cloud can be produced, and also the digital images can be draped onto the point cloud using texture-mapping techniques.
- 6. Point clouds are produced, as illustrated in Figures 1 and 3. Details on the point cloud file and software used for further processing are described in Chapter 3.
- 7. In general, 5-10 scans can be conducted in a day, depending on terrain, scan area, and the travel time to each site. A typical scan is taken from 20 to 100 meters from the rock outcrop, and a typical scan area can vary from 15x15 m² to over 50x50 m². The smaller areas require less than 10 minutes to scan, while a 50x50 m² area takes about 45 minutes to scan with a time-of-flight scanner. More details are provided in Chapter 5.

CHAPTER 3 – POINT CLOUD PROCESSING SOFTWARE

Point clouds by themselves are not useful without software to process the data and make measurements and other calculations. Also, in order to be useful, the point cloud data needs to interface easily with Computer Aided Design/Drafting (CADD) and slope stability programs. This section discusses the point cloud file format, point cloud processing software, and interfacing between point cloud software and other CADD and slope stability software.

THE POINT CLOUD FILE

As discusses in Chapter 2, the point cloud is the basic output from a 3D laser scanner. The most generic point cloud file format is a 3D coordinate file (often referred to as an xyz file). The format for this file is ASCII and can therefore be read by all post-processing software. The comma or tab-separated format for a grayscale 3D coordinate file is as follows with one line for each laser point:

Grayscale point cloud: x1 y1 z1 intensity1 x2 y2 z2 intensity2 ...

The x, y and z values refer to a specific coordinate system. If the point cloud is not registered, then by default the y direction is most often set to the instrument direction. After registration, the x, y and z directions are most often set to East, North and up, respectively. However these systems are not universal and the scanner or software manufacturer should be contacted for information on their specific 3D coordinate formats. The intensity for each point has a value that range from 0 (black) to 255 (white).

Similarly, the comma or tab-separated format for an rgb (red, green blue) 3D coordinate file is as follows:

Color point cloud: x1, y1, z1, r1, g1, b1 x2, y2, z2, r2, g2, b2 ...

Here r, g and b each have values that range from 0 to 255. Because the xyz file is ASCII, these files are slow to read and write; they also only contain the basic point cloud information. In general, each scanner manufacturer, and also each point cloud processing software manufacturer, has their own specialized binary format. Some examples of file extensions associated with different binary formats are given below.

Scanner manufacturer: Leica: .coe Riegl: .3dd Point cloud processing software manufacturer:Polyworks:.pif file formatSplit FX:.fx file format

At the present time the ASCII 3D coordinate file is the standard format for point clouds. However, because it is ASCII and only contains point cloud information, that is, no digital image or tin surface information, other formats have been discussed by both manufactures and users as better standard file formats for ground-based LiDAR output. These formats include the LiDAR Exchange Format (LAS) and the Virtual Reality Modeling Language (VRML). Additional details on these file formats are discussed in Chapter 6.

POINT CLOUD REGISTRATION

The first step in point cloud processing is to orient the point cloud into the real world coordinate system based on data taken in the field. Point cloud software usually includes several methods for point cloud registration. The most common method is to register the point cloud based on three or more targets of known position (3D similarity transformation). However, for some applications (such as slope stability), only the orientation registration is required. This means that the point cloud is oriented correctly, but the 3D coordinates are not registered to a known coordinate system (Universal Transverse Mercator coordinate system, for example). In these instances, simpler registration methods are possible, such as only measuring the orientation of the scanner (orient by scanner method) without any position surveying. In this case the scanner's position is defined by the bearing or direction of its line of sight, its inclination in the direction of the line of sight, and its inclination perpendicular to the line of sight. This provides enough information to correctly georeference the orientation of the scan (but not the position).

POINT CLOUD PROCESSING SOFTWARE

Most of the scanner manufacturers have developed their own point cloud processing software. In addition, several other companies have developed point cloud processing software. By exporting the point clouds in the xyz file format, point clouds from any scanner can be analyzed with any of the software packages. Point cloud processing software includes:

- Cyclone and Cyclone Cloudworx (Leica, <u>www.leica-geosystems.com</u>)
- Polyworks (Innovmetric, <u>www.innovmetric.com</u>)
- Riscan Pro (Riegl, <u>www.riegl.com</u>)
- Isite Studio (Isite, <u>www.isite3d.com</u>)
- LFM Software (Zoller+Fröhlich, <u>www.zofre.de</u>)
- Split FX (Split Engineering, <u>www.spliteng.com</u>)
- RealWorks Survey (Trimble, <u>www.trimble.com</u>)

Details on some of the software listed above are given in Appendix B (from POB, 2008).

The following editing/analysis features are found in most of the software packages:

- General point cloud visualization, including pan, tilt, and zoom;
- General point cloud editing, including adding and deleting points, noise removal, point decimation;
- Ability to make measurements such as distances, angles, areas and volumes;
- Ability to register scans, including the automatic detection of targets;
- Ability to stitch together multiple scans either using survey control or Iterative Closest Point (ICP) type algorithms;
- Ability to create a triangulated surface (Triangulated Irregular Network, or TIN);
- Ability to best-fit lines, planes, and other shapes to point cloud clusters;
- Ability to make profiles and cross sections through a point cloud; and
- Ability to handle various import and export formats (to CADD programs, for example).

The following advanced features are found in some, but not all of the software packages:

- Perform solid modeling (volume generation) based on user-defined lines, planes and other surfaces as bounds;
- Perform automatic extraction of standard shapes from cloud (e.g. pipe fittings, structural steel members, etc.);
- Have edge detection technology to determine boundaries of solids, planes and other shapes;
- Ability to drape a digital image over a triangulated surface;
- Automatically compute a full 3D polygonal mesh (not 2.5D) from a point cloud;
- Ability to integrate scans with floor plans, engineering drawings of objects and surveyed information; and
- Ability to make fly-throughs and other types of advanced visualizations.

The focus of this report is on the use of ground-based LiDAR for highway rock slope stability. Therefore, rather than describe all of the items in the above lists, this report focuses on specific features in point cloud software that allow geotechnical information to be extracted from point clouds. It should be noted that most of the point cloud software is generic in nature and is able to perform analyses for a number of applications including mechanical design, architecture, construction, and mining. The Split FX software, on the other hand, was developed specifically for extracting geotechnical information from point clouds of exposed rock surfaces and has the following features:

- Ability to automatically delineate fracture surfaces in a point cloud and determine the orientation, area, and roughness of each fracture;
- Ability to plot fracture orientations on a stereonet (pole and contour plots);
- Ability to pick joint sets, and determine statistical properties of each set set;
- Ability to delineate joint traces (automatic and manual) and determine joint spacing, length and orientation (true spacing and orientation if digital image is draped);
- Ability to trace fractures on draped photos to determine fracture orientations;
- Ability to subtract two point clouds to determine rockfall volume and rate; and
- Ability to estimate a rockfall hazard rating from a point cloud.

Many of the above items can still be analyzed using the "generic" point cloud software. For instance, to determine the orientation of a fracture in a point cloud, the points making up the fracture can be selected by hand, and the software will determine the orientation of the best-fit plane through the points. This can be done many times throughout the point cloud, and the orientations can be plotted using a separate stereonet program. In a similar fashion, the generic software can be used to estimate fracture length and spacing, roughness, etc. This is discussed in more detail in Chapter 4.

INTEROPERABILITY WITH CADD SOFTWARE

CADD software principally includes Microstation (Bentley, www.bentley.com) and AutoCAD (Autodesk, www.usa.autodesk.com), though many other programs are available. It also includes highway-specific CADD software, such as Inroads and Geopak. The interoperability between point cloud and CADD software is very important, and in the past this has been an issue with using LiDAR in highway applications. It still is an issue as will be shown in Chapter 6; however, as the point cloud software has improved with the addition of many new features in the past few years, interoperability is now greatly improved. For instance, importing a point cloud with a high density of points into a CADD program is not recommended, since CADD programs are not set up to efficiently handle the large number of points and the large file size. Many options now exist for exporting 3D information to the CADD environment, and programs such as Cyclone Cloudworx have been designed specifically for manipulating point clouds within a CADD environment. First of all, point clouds can be cropped and the density of points can be decimated so the file size is optimized. Secondly, specific 3D shapes (pipe fittings, steel members) can be extracted from the point cloud, which are much easier to work with in CADD programs than the points themselves. Thirdly, two-dimensional plans and sections can be created in the point cloud software and exported to CADD programs.

INTEROPERABILITY WITH SLOPE STABILITY SOFTWARE

Slope stability software used for highway applications include Rockpack III (RockWare, Inc., www.rockware.com), the Rocscience suite (Dips, Swedge, Rocplane, Slide, Phase2; www.rocscience.com), the Itasca suite (FLAC, FLAC3D, UDEC, 3DEC; www.itascacg.com), Slope/W (Geo-Slope International, www.geo-slope.com) and many others. Two of the advantages of using LiDAR for highway geotechnical investigations are the ease and speed at which scans can be made and rock characterization information extracted from point clouds. Along these lines, it is important that LiDAR-generated data can be easily exported to the slope stability programs mentioned above. There are three basic kinds of information that the slope stability programs import, and the ability of point cloud processing software to export this information is discussed below.

Export Individual Fracture Information

Many slope stability programs (Rockpack III, Swedge) are able to directly input individual fracture information in a spreadsheet format. For each discontinuity, this information includes orientation, size or length, roughness, etc. The specific position of the discontinuity can also be input into some of the programs (3DEC). In general, exporting this kind of information is straightforward for the point cloud processing programs, assuming that the point cloud programs can calculate the information in the first place. Most point cloud programs can fit a plane through a selected set of points and calculate the orientation and size.

Export Fracture Set Information

Some of the slope stability programs (Swedge, 3DEC) use statistical information about the number of fracture sets and the statistical properties of each set (such as the mean orientation and the Fisher constant). Once the orientation of individual fractures has been determined from LiDAR, this information is relatively easy to calculate in a spreadsheet. It is also very easy to export to slope stability programs since it only involves a few numbers for each discontinuity set.

Export Rock Mass Strength and Modulus

Many of the slope stability programs (Slide, FLAC, FLAC3D, Slope/W, Phase2) use rock mass properties (Hoek and Brown rock mass parameters or Mohr-Coulomb rock mass parameters, for example) rather than individual fracture information. To date, none of the point cloud programs have the capability to make the necessary calculations. However, these rock mass properties can be calculated from the information extracted from the point clouds using the procedures described in Hoek (2007) and others.

CHAPTER 4 – LIDAR APPLICATIONS TO ROCK SLOPES

This chapter provides details on how LiDAR can be used to assist with highway rock slope stability analyses. This chapter is separated into the three sections: rock mass characterization, rockfall characterization, and detailed 3D measurements.

ROCK MASS CHARACTERIZATION

As described in Chapter 1, rock mass characterization is the process of obtaining data for rock slope stability, and in the current practice much of this information is obtained by hand at highway slopes and natural rock outcrops. This section describes the use of LiDAR (and associated digital images) to obtain this information. At the present time, rock mass information that is being obtained from LiDAR includes discontinuity orientation, length, spacing, roughness, and block size (Kemeny et al., 2006a, 2006b, 2006c). In addition, research is presently being conducted to obtain additional information, including geology, weathering and discontinuity fill (Kemeny, 2006b).

Discontinuity Orientation

Figure 4 illustrates the general procedure used to obtain information on discontinuity orientation. The first step is to scan a field site of interest, produce a point cloud, and register the scan into a terrestrial coordinate system (as described in Chapter 2). Figure 4a shows a field site in Colorado that was scanned using an Optech ILRIS 3D scanner, and Figure 4b shows the point cloud from this site. The next step is to create a surface mesh from the point cloud data. In the process of creating a surface mesh, erroneous data points in the point cloud can be filtered. This includes the removal of points outside the area of interest, the removal of points directly in front of the area of interest (due to cars, dust or other objects causing an erroneous laser reflection), and the removal of non-rock objects on the rock slope. The first two items are easily accomplished using standard hand-editing features in point cloud processing software. The third item is more difficult and requires either significant hand-editing or the development of special vegetation or other types of filters (Virtual Geomatics, 2008; Pfeifer, 2004). Figure 4c shows a triangulated mesh of part of the point cloud shown in Figure 4b.

The most important processing step is the delineation of fracture "patches" from the triangulated surface mesh. The term "patch" is used rather than fracture, because a single large fracture may be delineated into several smaller patches, depending on the flatness and roughness of the fracture. Fractures are detected by using the basic property that they are flat. Flat surfaces are automatically found in the triangulated mesh by first calculating the normal to each triangle, and then finding groups of adjacent triangles that satisfy a flatness criterion. This criterion has parameters that can be adjusted by the user.

Figure 4a. Photo. Field site that was scanned using ground-based LiDAR.

Figure 4b. Schematic. Point cloud for the field site shown in Figure 4a.

Figure 4c. Schematic. Triangulated mesh for point cloud shown in Figure 4b.

Figure 4d. Schematic. Automatic delineation of fractures for the point cloud in Figure 4b.

Figure 4e. Plot. Stereonet plot of fractures from Figure 4d.

Figure 4d shows the patches that were found in the point cloud shown in Figure 4b, using the criterion that a patch must be at least 5 triangles, and neighboring triangles in a patch must not deviate in orientation by more than 10 degrees. The patches are outlined in yellow and holes in patches are outlined in red. Overall this simple criterion results in a good delineation of the major fractures at the site. Patches can also be manually added, deleted and edited. Once the patches have been found, their average orientations can be plotted on a stereonet. Each patch plots as one point on the stereonet. However the size of the point can be adjusted based on other parameters such as the patch area or roughness. Large patches are a good indication of important fractures and fracture sets. Small patches, on the other hand, may not actually be a fracture but only a small portion of the surface that happens to be flat. Thus it is useful to weight the points by fracture area, and plot the smallest fractures as only a small dot. Figure 4e is a plot of the patches from Figure 4d, weighted by patch area. Four fracture sets can be clearly seen and have been outlined in Figure 4e. Once the sets are identified, the statistical properties of each set can be determined. The total time spent to produce the results shown in Figure 3 from the previous chapter, starting from the raw point cloud file, is less than one hour.

A particularly useful feature of point cloud processing software is the interaction it allows between the stereonet and the point cloud. Delineating joint sets from stereonet data is difficult and necessitates professional expertise. Normally the data is taken in the field and the compilation and definition of joint sets is accomplished at a later time. Therefore, any difficulties with interpretation of the data cannot be resolved without additional field work. With access to the point cloud, however, additional analysis can easily be conducted off site. For instance, a group of patches can be selected on the stereonet and then viewed on the point cloud. This allows the user to go back and forth between the stereonet and the point cloud to determine with a great deal of precision the delineation of important fractures and fracture sets. Figure 5 shows an example from a highway slope near milepost 8 along the Mt. Lemmon Highway near Tucson, Arizona. In this case a single scan was made, and scanner registration consisted of Brunton measurements of the scanner position. Automatic fracture delineation was conducted and the results are shown in the black stereonet in Figure 5 (over 1000 data points). Fractures with different orientations are shown with different colors, which assists with interpreting the structure (Jaboyedoff et al., 2007). In Figure 5 the results are also compared with traditional, manually-collected scanline mapping (white stereonet with 50 measurements). The results show that there is a very good correlation between the manual and LiDAR-generated data. The man-hours needed to produce the stereonets can also be compared. Traditional scanline mapping at this site required about 5 hours, which consisted of manual measurements in the field (4 hours), data entry into the computer (30 minutes) and stereonet plotting (30 minutes).

Figure 5. Photo and Schematic. Scan on Mt. Lemmon Highway. Comparison of LiDAR generated data (black stereonet) with hand measurements (white stereonet).

The LiDAR generated data required less than 2 hours, which consisted of scanner setup in the field and Brunton measurements of the scanner orientation (30 minutes), scanning (15 minutes), downloading data from the scanner to the computer (15 minutes), and processing the point cloud data in the Split FX program (45 minutes). Not only did the LiDAR scanning require less time, but 20 times more fracture poles were generated from LiDAR than in the traditional scanline mapping (1000 LiDAR generated poles vs. 50 manual). In several cases, a discontinuity set is represented by a single measurement in the manual measurements (which would undoubtedly be thrown out in the any analyses), compared with a large number of poles in the LiDAR generated data. The shapes of the fracture sets are also much better defined in the LiDAR generated data

because of the large number of data points. In some cases, particularly slopes where access is very difficult, the LiDAR generated data could represent a cost savings over traditional measurements. This is discussed in more detail at the end of this chapter.

The number of laser points that strike a fracture surface will depend on many factors, including the laser resolution, the size of the fracture, the distance of the fracture, and the orientation of the fracture relative to the scanner orientation. Fractures that are sub-parallel to the direction of scanning may be under-represented on the stereonet because fewer laser points will strike those surfaces. However, a careful evaluation of the point cloud and the stereonet can reveal those under-represented areas in the stereonet, and patches can be added accordingly using hand-editing tools in the point cloud processing software. The scanner can only detect surfaces that are in the scanner's line of sight, and the portion of the surface that is not in the scanner's line of site is referred to as the scanner "shadow zone". In some circumstances, an entire joint set may be in the scanner shadow zone, and in these cases several scans need to be taken at different angles to the face in order to adequately represent the structural conditions at the site.

If a structural feature (such as a joint set) is in the shadow zone, it is likely that traces of the structure will still be visible from the direction the scan was taken, and in these cases photo draping can be used to extract the orientation of the structure. Details on photo draping (also called texture mapping) are described in Blythe (1999). An example of photo draping is shown in Figure 6. Figures 6a and 6b demonstrate the draping of a high-resolution digital image over the point cloud for the outcrop shown in Figure 5. Three "pins" were used to align the photo over the point cloud. The pins are first inserted into the digital image at specific locations (red dots in Figure 6a), and then on the point cloud the pins are moved to the same locations (red dots in Figure 6b). Figure 6c shows a location where six traces were made on the digital image. In one case the trace was made of a fracture that showed relief so that the orientation could be determined from both the trace and the point cloud. In the other five cases, the orientation could not be determined from the point cloud. Figure 6d shows the extracted 3D orientations from the traces. Photo-draping works well in extracting 3D orientations from traces, and in studies where both traces and fracture surfaces were available, the orientation results from draping agree within a few degrees with the point cloud results.

Figure 6a. Photo. Step 1 in photo draping procedure, insert pins on digital image.

Figure 6b. Photo. Step 2 in photo draping procedure, align pins on point cloud to the same position as in digital image.

Figure 6c. Photo. Step 3 in photo draping procedure, delineate fracture traces on the digital image.

Figure 6d. Photo. Step 4 in photo draping procedure, three dimensional fracture orientations extracted from the traces.

The procedure described above can also be used to determine the orientation of a single critical structure such as a fault. A fault can be more clearly identified on the digital image rather than the point cloud. Also, because a fault is weak, it may not show any three dimensional surfaces where the orientation could be extracted from the point cloud alone. In this case the fault can be traced on the digital image and the orientation determined from the technique described above.

Discontinuity Roughness

There are several ways that LiDAR data can be used to get information on discontinuity roughness. The first way is to use a triangulated mesh of a fracture, as illustrated in Figure 7. If the orientation of each triangle is plotted on a stereonet, then the scatter about the mean orientation of the fracture gives information on the dilatation angle. In the classic saw-toothed fracture analyzed by Patton (1966), the dilatation angle is defined as the rise angle of the saw teeth compared with the mean orientation, as shown in Figure 7. The dilatation angle is directly related to the additional friction angle due to roughness (Goodman, 1989), and on a stereonet, the dilatation angle can be directly determined by the angle between the mesh triangle orientation and the mean orientation of the fracture. The example in Figure 7 shows a scatter of triangle orientations, with the mean fracture orientation at the center of the scatter. The stereonet in Figure 7 is marked off in degree increments of 10 degrees, and indicates dilatation angles ranging from a few degrees to over 30 degrees. Also the shape of the scatter in the stereonet is elliptical, indicating roughness anisotropy (dilatation angle varies with direction). By varying the triangle size of the mesh, scale-dependent roughness can be determined. As an important note, the triangle size needs to be greater than the scanner error, or else roughness due to measurement error will be calculated. For example, in Figure 7 the triangle size was about 8 cm, compared to the point spacing of about 1 cm and scanner error of about 0.5 cm.

Figure 7. Schematics. One method of analyzing fracture roughness using LiDAR data, by making a triangulated mesh of a fracture and plotting the pole for each triangle on a stereonet.

Figure 8 gives a second example taken from the scan of an open pit mine in Montana. Two large fractures shown in Figure 8 have been analyzed using the technique described above, and the triangle orientations are presented in contoured stereonets in Figures 8b and 8c. Eliminating the outlier triangles and considering the contour representing about 90% of the poles (lightest blue contour), maximum dilatation angles of 10-15 degrees are revealed.

Figure 8a. Photo. Location of two large fractures for determination of maximum dilatation angle using the method described in Figure 7.

Figure 8b. Chart. Contoured stereonet of poles of each mesh triangle in left fracture shown in Figure 8a.

Figure 8c. Chart. Contoured stereonet of poles of each mesh triangle in right fracture shown in Figure 8a.

The second way to get information about roughness is to make cross sections through a fracture at different angles (a cross section in the direction of the dip vector, for instance, would be relevant for slope stability purposes). Figure 9 illustrates the procedure. The roughness profiles are calculated from the triangulated surface, and therefore the same aforementioned scale-dependence and caution about noise are applicable. There are several published methods for extracting fracture roughness information from two dimensional roughness profiles. For instance, Tse and Cruden (1979) describe a technique where Z_2 , the root mean square of the derivative of the profile, is first calculated. The Joint Roughness Coefficient (JRC, see Hoek, 2007) is then calculated using the empirical formula:

$$JRC = 32.2 + 32.47 \log Z_2. \tag{3}$$

This technique was used successfully by Haneberg (2007). Studies with this technique have shown that it can sometimes give values of JRC outside the range of 0-20, and therefore the technique described in Figures 7 and 8 is preferred at this time.

Figure 9. Schematic. A second method of analyzing fracture roughness, by making topographic profiles of the fracture in different directions, and processing the roughness profile to extract roughness parameters such as JRC.
Fracture Length and Spacing

Fracture length and spacing can be measured from either digital images or point clouds, as shown in Figure 10. In two dimensions (measured from a digital image of a road cut, for instance), the measured fracture spacing is referred to as the "apparent" spacing, and can be corrected if the true average orientation of the set is known. In three dimensions (measured from a point cloud or a draped photo), the true spacing can be measured directly if the measurement is made perpendicular to the average strike of the set.

Figure 10. Photo and Schematic. Information on fracture length and spacing can be extracted from both a) point clouds, and b) digital images.

Automatic trace delineation involves image processing algorithms called edge detectors (Gonzalez and Wintz, 1987). The development of edge detection algorithms for rock fractures are described in Hadjigeorgiou et al. (2003), Kemeny and Post (2003) and others. Even though automatic trace delineation algorithms are available in many image-processing programs (including Split FX), they are not recommended at this time for several reasons. First of all, they will delineate all the fractures in an image, which will undoubtedly come from several structural sets (as illustrate in Figure 10b). This means that in order to determine statistical parameters for each set, hand editing will still be necessary. Secondly, due to the complexity of images of rock outcrops, no automatic routine will do a perfect job of delineation and corrections will need to be made using hand editing tools. Thirdly, it does not take very long and does not require expertise to delineate fractures by hand. The traces in Figure 10b, for instance, took only several minutes to delineate.

Fracture length and spacing are interrelated, as illustrated in Figure 11. If the fractures are persistent (fractures long in relation to the spacing), then the measurement of fracture spacing for a given set is well defined and measured perpendicular to the average orientation of the set, as illustrated by the red "scanline" in Figure 11a. If the fractures are non-persistent (fractures short in relation to spacing), then the measurement of fracture spacing is not well defined by a single scanline, and several scanlines perpendicular the average orientation are needed, as illustrated by the green scanlines in Figure 11b. In either case, a histogram of fracture spacing is produced for each set.

Figure 11. Schematic. Persistent vs. non-persistent discontinuities (black lines). a) persistent discontinuities, with a single scanline (red) to obtain fracture spacing information, b) non-persistent discontinuities, with multiple scanlines (green) used to obtain fracture spacing information.

In order to get accurate information on fracture length and spacing from digital images, proper images must be taken. Figure 12 shows two digital images of rock outcrops. In the first image the joint traces are clear and the scale of the image is appropriate for the density of joints. In the second image, the individual joint traces are difficult to see because the scale of the image is not appropriate for the density of joints at this site (close-up image needed to provide appropriate level of detail).

Figure 12. Photos. a) digital image with the proper density of fracture information, b) figure cannot be analyzed at its current scale (close-up image needed to provide appropriate level of detail).

Block Size

Block size is a parameter that depends on the interaction of all the joint sets together, into a fracture network. In a similar fashion to fracture length and spacing, block size can be measured

from either a digital image or a point cloud, and either manually or using edge detection algorithms.

Figure 13 illustrates block delineation using manual tools for both digital images and point clouds. In the case of a digital image, the block area is calculated and the area must be converted to volume using an assumed length in the third dimension. In the case of the point cloud, the block volume is measured directly.

Figure 13. Photos. Manual methods of getting block size information, both from a) point cloud and from b) digital image.

In order to automatically delineate blocks and determine the distribution of block volumes at a site, the rock bridges must be first identified. Rock bridges are small sections of intact rock that separate coplanar or non-coplanar discontinuities, and prevent blocks from being "removable". Similar to the problem of trace delineation, the identification of rock bridges in a digital image of a rock outcrop is not a simple problem, and the use of hand-editing tools, such as those shown in Figure 13, is recommended at the present time.

Discontinuity Weathering and Fill

All of the discontinuity parameters described above (orientation, length and spacing, roughness, block size) relate to the geometry of the discontinuities and the fracture network, and it has been demonstrated that LiDAR and digital image processing do an excellent job of providing information on these parameters. Equally important, however, is the "condition" of the discontinuities, which include parameters such as weathering and fill. These parameters directly relate to the friction angle of the discontinuities, and highly weathered fractures or fractures containing very weak fill can have dangerously low friction angles. Also, weathering and fill make up a large component of rock mass classification systems. For instance, in the Rock Mass Rating (RMR, Bieniawski, 1989), Q (Barton et al., 1974), and Geologic Strength Index (GSI, Hoek, 2007) systems, weathering and fill account for about 12%, 25%, and 30% of the total rating, respectively.

LiDAR and digital image processing have the potential for providing information on discontinuity weathering and fill, and this is an area of current research. Some initial work on using texture algorithms to evaluate discontinuity weathering was investigated by Monte (2004). A comparison of the texture of a weathered and unweathered fracture is shown in Figure 14. Monte (2004) found that texture algorithms at a given site were able to differentiate discontinuities with different amounts of weathering after the parameters in the algorithms were properly adjusted. However, these parameters had to be readjusted for other locations and other rock types.

Figure 14. Photos. Example of digital images of a) unweathered, and b) weathered discontinuities.

A more promising approach that is currently being investigated is using multi-spectral and hyper-spectral imaging to differentiate weathering and fill (Gupta et al., 1999). In particular, in many rock types weathering and fill is associated with clays, which can be identified with multi-spectral and hyper-spectral imaging. Determining the degree of weathering at a site at the present time is subjective because it is based primarily on visual inspection. However, the use of new techniques such as hyperspectral imaging could lead to more deterministic measures of weathering and discontinuity fill.

ROCKFALL CHARACTERIZATION

A second major highway application for LiDAR is rockfall characterization. This includes the characterization of rockfall source areas, the characterization of rockfall chutes, and monitoring rockfall occurrences by taking periodic scans of an area of interest.

Characterizing Rockfall Source Areas

Rockfall source areas can be characterized with LiDAR scans, to determine the risk for rockfall and slope instability. Characterization can include standard rock mass characterization as well as

rockfall hazard ratings (e.g., Patterson et al., 2002). Rockfall source areas are often difficult to access and characterize using traditional methods. Figure 15 shows before and after pictures of the source area for the 2004 Thanksgiving day rockfall that occurred along Interstate 70 in Glenwood Canyon, just east of Glenwood, CO. It was a large volume rockfall and the source area was on the north side of the canyon about 400 m (1312 ft) above the highway. Traditional site characterization in steep remote areas such as this involve rappeling down the slope, which is costly and poses safety hazards. The LiDAR techniques described earlier in this chapter are ideal for characterizing rockfall source areas.

Another example of a potential use of LiDAR for rockfall characterization is shown in Figure 16. It shows a highway slope near Pine Valley, California that is weathering and exposing large boulders that pose a rockfall hazard. LiDAR scanning of this slope could be used to determine the number and sizes of the boulders. Repeated scans at this same site over time could also be used to monitor the weathering process.

Figure 15. Photos. Section of Glenwood Canyon a) before, and b) after the 2004 Thanksgiving Day rockfall.

Figure 16. Photo. Weathering of a slope near Pine Valley, California, exposing boulders that pose a rockfall hazard.

Rockfall Chutes

The rockfall source area determines the size and initial location of rock blocks that could impact a highway. When a rock block dislodges from a source area, it often travels along a developed path or chute until it reaches the highway. Therefore, the characteristics of rockfall chutes often determine the location, velocity and other aspects of a rockfall event. In particular, the chute characteristics must be understood in order to design rockfall fences or other support measures. One important aspect of the rockfall chute is the topographic profile, which can be characterized with LiDAR using cross section tools. Figure 17 shows photos and profiles of a major rockfall chute on the north side of Interstate 70 near Georgetown, Colorado (scan taken from the Georgetown Interstate 70 overlook). Figure 17a shows a photo of the scan area, with the rockfall source area at the top of the photo, the chute in the middle and rockfall fences near the bottom of the photo. Figure 17b shows a side view of the point cloud, showing the scanner, scanner direction and Interstate 70 at the bottom right, and the rockfall source area at the upper left (horizontal scale reads 460 m, vertical scale reads 328 m). The rockfall source area is about 600 meters (1969 ft) from the scanner. Figure 17c is a plan view of the point cloud showing two cross-sections through the chute area; one to the right of the trees down the middle of the chute (Section A) and the other to the left of the trees (Section B). Figures 17d and 17e show the profiles from sections A and B, respectively. The sections are made through the triangulated mesh, and gaps in the sections are areas where the mesh was not constructed due to insufficient point cloud data). The two profiles are similar except for the steep section in the center of section A, due to a small rock outcrop that can be seen in the close up photo in Figure 17f. Figure 17g shows close ups of the point cloud near the rockfall fences.

Figure 17a. Photo. Rockfall chute, north side of Interstate 70 near Georgetown, Colorado.

Figure 17b. Schematic. Side view of point cloud taken of site shown in Figure 17a.

Figure 17c. Schematic. Plan view of point cloud showing the location of two cross sections.

Figure 17d. Schematic. Section A (refer to Figure 17c).

Figure 17e. Schematic. Section B (refer to Figure 17c).

Figure 17f. Photo. Close-up photo of center section of chute.

Figure 17g. Schematics. Close up views of point cloud showing rockfall fences.

Often a rock block does not travel to its final resting place once it dislodges from the source area. Rock blocks may slowly travel down a chute in a time-dependent fashion (during periods of rainfall, for example). Figure 18 is a photo of a small chute above Interstate 70 near Georgetown, Colorado (source area at the very top of the photo, Interstate 70 at the bottom of photo). It clearly shows several large blocks that have dislodged from the source area and are presumably moving down the slope in a time-dependent fashion. Rockfall monitoring with LiDAR can be used to understand this behavior, by taking scans at the same location but at different times (every 6 months or every month, for instance). Rockfall monitoring with LiDAR is discussed in more detail in the next section.

Figure 18. Photo. Slope above the north side of Interstate 70 near Georgetown showing a small rockfall chute containing several large rock blocks.

Rockfall Monitoring

A very important application of LiDAR is rockfall monitoring. Rockfall monitoring is conducted by taking LiDAR scans of the same scene at some interval of time, say once every six months (or more often in areas with high rockfall risk). Figure 19 shows a LiDAR rockfall monitoring site on Interstate 70 near Georgetown, Colorado. The top part of the figure shows mapping that was conducted by the Colorado Dept. of Transportation of rock fall source areas and rockfall chutes (CDOT, 2005). The highest risk rockfall source areas are striped areas shown in red and lesser risk areas are striped areas in yellow and orange. The chutes are shown in purple. Interstate 70 goes through the middle of the photo and the town of Georgetown is the right of the photo. Permanent benchmarks have been set up along the bike path next to the interstate, as shown in the lower right photo of Figure 19. In total there are 20 benchmarks covering about 3 km (1.9 m) of Interstate 70.

Figure 19. Photos and Schematic. Rockfall study area along Interstate 70 near Georgetown, Colorado. Top photo shows rockfall source and chute characterization, from CDOT (2007). Lower photo shows permanent benchmarks set up along bike path.

The periodic scans are processed to evaluate rockfall using "change algorithms". Change algorithms can be found in a number of the point cloud processing software. The change algorithms subtract two point clouds and produce a "difference cloud", which is a point cloud providing information on the relative difference between the two scans at points throughout the area that was scanned. From the change, the movement of a rock block can be tracked, or the size of a block that has move can be monitored. The total accumulated rockfall rate can also be calculated. Before the change algorithm can be applied, the two point clouds must be aligned as accurately as possible. In general, Iterative Closest Point (ICP) algorithms (Besl, 1992) are used to align the scans with the highest accuracy (higher than can be achieved by surveying alone).

A field site for testing change algorithms was set up at Milepost 2, Mt. Lemmon Highway, Arizona. A "rolling rock" experiment was conducted where 8 boulders with sizes from 10 to 100 cm were moved, as shown by the red circles in Figure 20a (larger circles represent larger boulders). Before and after scans were taken. The Iterative Closest Point (ICP) algorithm was applied and a difference point cloud was produced, as shown in Figure 20b. In Figure 20b, red indicates negative change (missing material compared with original scan), blue indicates positive change (new material). From this field site it was determined that the movement of boulders as small as 15 cm can be detected (the scans at this site were taken from a distance of about 60 m).

Figure 20a. Photo. Field site for testing change detection algorithms. Boulders marked with red circles were moved.

Figure 20b. Schematic. Difference point cloud. Red indicates negative change (missing material), blue indicates positive change (new material).

In addition to being used for safety purposes, the information from periodic scans can also be used to assist with rockfall maintenance. Figure 21 shows a rockfall fence filled with rock blocks. In order to work effectively, rockfall fences must be maintained, with a maintenance schedule dependent on the rockfall rate. Similar maintenance is required for rockfall ditches.

Figure 21. Photo. Rockfall Fence Containing an Overflow of Rock Fragments.

DETAILED 3D MEASUREMENTS

The last application of LiDAR for highway applications is the general area of detailed 3D measurements. LiDAR surveys provide a detailed "as built" that can be used for estimating various highway parameters, such as ditch width, slope height, roadway width, etc. These are parameters that are also used in estimating rockfall hazard ratings, as shown in Figure 22 (e.g., Patterson et al., 2002; Pack et al., 2002).

Before and after as-builts can also be used to verify the volume of a highway excavation, to accurately determine the shrink-swell behavior of particular rock type (Henwood et al., 2006), or to estimate stockpile volumes.

- 1. Slope height
- 2. Ditch effectiveness
- 3. Average vehicular risk
- Sight distance
- Roadway width
- 6. Structural condition (discontinuities)
- Rock friction
- 8. Structural condition of eroded rock
- 9. Difference in erosion rates
- 10. Block size or volume of rockfall per event
- 11. Climate and presence of water on slope
- 12. Rockfall history.

Figure 22. Schematic. Parameters used in many Rockfall Hazard Rating systems (left). Example of point cloud to estimate many of these parameters (right).

CHAPTER 5 – BEST PRACTICES

As hardware and software solutions are being developed for rock mass and rockfall characterization using LiDAR and digital image processing, guidance is needed on specific and appropriate procedures involved to conduct ground-based LiDAR surveys, as well as the appropriate data validation, processing and management procedures. In the field, appropriate procedures must be specified concerning a) the suitability of a site for LiDAR surveying, b) the procedures for scanning (number of scans, point spacing, resolution, etc.), c) establishing surveying control points, d) taking digital images, and e) collecting non-digital types of information. After a survey is conducted, data processing and management procedures include a) the specific steps that should be taken to process the data using various software packages for specific outcomes (i.e., calculate the slope hazard at a particular site), and b) the appropriate standards and formats for managing and archiving the various kinds of data from a LiDAR survey, including the raw scanner files, point cloud files, rendered surface files, and calculations and interpretations made on this data.

Based on a number of case studies that have been conducted in the past several years (some of which were described in Chapter 4), recommendations for best practices for the topics mentioned above are made, as discussed below. It should be noted that the development of best practices is an ongoing activity, and the recommendations made in this section will change with time. This chapter concludes with sections on the cost of a LiDAR survey, the accuracy of LiDAR generated data, and a brief comparison of LiDAR and photogrammetry for obtaining geotechnical data.

BEST PRACTICES IN THE FIELD

The basic procedure for scanning in the field was described in Chapter 2. Now some detailed recommended procedures are presented.

Deciding on Scanner Placement and Number of Scans

One of the first and most important steps is to spend a few minutes at the field site to determine where the scanner will be placed and how many scans will be made. For scans of a slope adjacent to a highway, scans will most likely be made on the opposite side of the highway, along a turn-out or shoulder. In general, it is best if the distance from the scanner to the slope is at least as great as the height of the slope of interest, as shown in Figure 23. This eliminates a sharp angle between the scanner field of view and the dip of the slope. If the height of the slope of interest is higher than approximately 30 m (98 ft), then the optimum location for the scanner will be farther away than the other side of the highway, which could present access and viewing problems depending on the topography and landowner issues. Another parameter is the distance between scans taken along the highway. In general it is best if the scanner horizontal field of view is 50 degrees or less, as shown in Figure 23. This eliminates a sharp angle between the scanner field of view and the strike of the slope. Also, at least a 20% overlap between scans

should be maintained, as shown in Figure 23. The overlap is used to assist with the stitching together of point clouds.

A final decision is whether multiple scans of a face taken at different angles should be made. Depending on the orientation of discontinuities relative to the scanning direction, it is possible that a joint set will be obscured (in the scanner shadow zone, as discussed

Figure 23. Schematic. Figures on left show cross sections with recommended scanning distances depending on the height of the slope of interest. Figure on right shows plan view with recommended distances between scanning locations.

in Chapter 4). If the guidelines given above are followed, the chance of significant scanner shadow zone is minimized. Also, a joint set that is subject to scanner shadow zone is likely to show traces, from which the orientation can be picked up with tracing on a draped photo as shown in Chapter 4. However, it is important to evaluate each scanner site for possible shadow zone, and take multiple images if necessary. For instance, referring to Figure 23, if Scan 2 has a potential problem with scanner shadow zone at Face 2, then either the locations of Scan 1 or Scan 3 can be used to take an additional scan of Face 2.

In most cases, multiple scans of a face at different angles will not be necessary, particularly with the use of photo draping to extract discontinuity orientation from fracture traces. However, if

time warrants, and if the site conditions are complex and/or high risk, then taking multiple scans to eliminate potential scanner shadow zones is recommended.

Deciding on the Method for Scanner Registration

The next important step is to decide how scanner registration will be conducted. All scanners are able to register a point cloud by having at least three targets of known position in the scene. The three or more targets should not be in the same plane, and having targets across all areas of the scene produces the best results. Another procedure is to register some of the scans using targets, and register others by "stitching" them with those that have been registered (the stitching uses an Iterative Closest Point algorithm and is available in several of the point cloud processing programs). Some scanners can be registered by backsighting to known benchmarks along with surveying in the location of the scanner. Backsighting uses a built in optical telescope to site to known points so that the orientation of the scan can be determined. Finally, the orientation can be registered by carefully measuring the orientation of the scanner (if the scanner is leveled this only involves the measurement of scanner bearing). This last method, along with an accurate GPS of the scanner origin (sighting over a known benchmark, for instance), will also give the full registration. It should be noted that none of the above methods involve putting targets on the rock slope itself. Putting targets on the slope is a safety hazard and should be avoided, particularly on unstable slopes. However, depending on specific site conditions, putting targets on the slope may have advantages if it improves the accuracy of the registration and can be conducted in a safe manner.

At the present time, there are no recommendations on the preferred method for scanner registration. One reason is that the recommended method depends on the type and model of scanner. Backsighting, for instance, is only available in some of the scanners. Several publications are available looking in detail at the accuracy of various methods of scanner registration (Reshetyuk, 2006, for instance), the details of which are beyond the scope of this report. Several studies have been made by the author to compare different methods for scanner registration, but the results from these studies are not available at the present time.

Scanner Field of View and Point Spacing

In order to get a uniform point spacing in the point cloud, follow the guidelines as given in Figure 23 for the scanner field of view. Figure 24 shows a point cloud taken with a Riegl scanner, which has a 360-degree field of view. It shows a very high density of points near the scanner, with a much wider spacing farther away from the scanner. Shown in green is the only area of the point cloud that should be analyzed. It represents the rock face of interest (not things on the other side of the highway of no interest) with the field of view following the guidelines shown in Figure 23.

Figure 24. Schematic. Point cloud example. Plan view of scan of Mt. Lemmon Highway, Milepost 15. Proper scan window shown in green, unsuitable scanned highway slopes shown in red.

The areas shown in red are also of the rock face of interest, but these areas have two problems; 1) the point spacing will be much greater than that shown in the green region, and 2) the angle between the scanner and the face is too steep. It is recommended to always use the appropriate scanner field of view, to reduce the point cloud size and eliminate non-optimum scanner angles relative to the rock face. When taking multiple scans of a single face, as discussed in the text associated with Figure 23, a non-optimum scanner angle relative to the face is acceptable if the purpose is capture data on structural features that are hidden from one direction. In this case, even though the angle between scanner and rock face may be small, the angle between scanner and a particular structural feature of interest will still be satisfactory.

Average point spacing in the point cloud is a very important parameter that should be optimized for a particular application. In general, point spacings of 2 cm or less are optimum for most of the geotechnical applications discussed in Chapter 4 (rock mass characterization, rockfall chute characterization, rockfall change detection). Point cloud spacings up to 5 cm are acceptable for the scanning of high slopes (such as Glenwood Canyon), but point cloud spacings greater than 5 cm are not recommended for any geotechnical applications. For non-geotechnical applications involving the generation of a 3D digital terrain model, point cloud spacings up to 10 cm could be

acceptable. Figure 25 shows an example of a point spacing of about 1.5 cm, allowing features less than 0.3 meters to be delineated clearly.

Figure 25. Schematic. Point cloud example. Ideal point cloud with a point spacing of about 1.5 cm (yellow ruler showing 1.85 meters).

Taking Digital Images

High-resolution digital images should always accompany each point cloud. The digital images can be used stand-alone for rock mass characterization and rockfall applications, or registered with the point cloud using photo draping techniques. All new scanners have high-resolution cameras built in (or mounted on top), and digital images are part of the "data package" that is produced from these scanners. However, older scanners may only have a low-resolution camera or no camera at all, so it is important to take digital images separately in these cases. Even with the newer scanners, it is good practice to take digital images separately to document the scanning and the overall site conditions. Separate digital images can also be used to take close-up images of rock features of interest. In general, image scale and camera calibration is not required for digital images taken separately, since this information can be extracted from the associated point cloud.

Field Notes

In addition to the data from the scanner, surveying, and any digital images taken separately, field notes should be taken (either by hand or using a laptop or handheld) and the field notes file should be placed in the same computer folder as the other data. Field notes can include the following:

- Location of site (from GPS or map)
- Site geology
- Rock mass information that cannot be extracted from point cloud (rock weathering, discontinuity fill, Schmidt hammer readings, small scale roughness, etc.) In order to associate this information with scan-derived information, the GPS coordinates of each piece of data collected can be recorded.
- Miscellaneous information such as details of benchmarks or other data collection activities in the area.

DATA PROCESSING BEST PRACTICES

A basic description of data processing using point cloud processing and CADD software was described in Chapter 3. Here we describe some specific recommended procedures.

Data Management

Data processing with point cloud processing and CADD software produces a number of very large files. For instance, a point cloud file containing one million points will take up about 30 Mbytes as an ASCII file and about 10 Mbytes as a binary file. The file will become larger as digital images and other kinds of information (such as stereonets and text) are added to the file. As discussed in Chapter 2, one million points might represent the scanning of a 30 meters high by 40 meters wide portion of a slope. If a number of scans along a highway are stitched together, then the size of the file goes up accordingly. It is important to store more than just the "finished" DTM files (data files that have been triangulated, stitched, photo draped, edited, etc.) or just the extracted geotechnical data. At a minimum, the original files from the scanner should be stored, as well as the point clouds once they have been registered (preferably in the xyz format given in Chapter 2 so that the data can be easily opened in any point cloud processing program). Each scan or set of scans should have a dedicated folder that contains the raw scanner files, registered point clouds, field notes, digital images, CADD files, etc.

Point Cloud Stitching

Individual point clouds usually have 1 to 3 million points (for 2 cm point spacing, that's a square areal coverage of approximately 25-45 m (82-148 ft) on a side). A site may consist of ten or more point clouds (sequentially down the highway as in Figure 23, for example). The point clouds can either be viewed and processed separately, or they can be stitched together into a single combined point cloud. For extracting geotechnical data, it is not necessary to stitch the point clouds together, and in general it is not recommended to do so. This is because the

combined point cloud may have 20 million points or more, and will be very difficult to visualize and rotate in point cloud software. Point cloud software such as Split FX does allow the individual unstitched point clouds to be in the same file, and to combine the fracture orientation data on a single stereonet without having to stitch the point clouds together. For other purposes, such as viewing and making 3D measurements, it may be advantageous to have a single stitched DTM. In this case, it is recommended that a triangulated surface is made and only the merged triangulated surface is used for combined 3D measurements.

Extracting Rock Mass Characterization Information

At the present time, the only point cloud processing package that has a number of built-in features for extracting rock mass characterization information is Split FX. Based on using the software for a number of years, some best practices are given in Appendix C.

THE COST OF A LIDAR SURVEY

As described in this chapter, LiDAR can be used to collect important field data for the analysis of highway slope stability, and there are safety, access and other advantages of doing so. In many instances, the collection of this data using LiDAR could represent a cost savings compared with traditional methods. For example, the following numbers are based on the collection of discontinuity orientation measurements along a 300 meter section of Highway 93 in Arizona:

Traditional data collection and analyses:

- Cell mapping, 350 joint orientation measurements, 2 people for 2 days
- Processing and making graphs of the data, 1 person for 1 day
- Total 5 man days (with overhead, assume \$1000 per day)
- Share of equipment and software costs \$250
- Total cost about \$5250 (mostly manpower)

LiDAR with automated fracture analysis software

- Field scanning (six scans) and digital imaging, 1 person for 1 day
- Data processing, 1 day
- Scanner rental, \$1500
- Share of other field equipment (camera, etc.), \$200
- Share of software costs, \$800 (assumes 10 projects covers software cost)
- Total cost \$4500 (less than 50% manpower)

This would be considered a typical example where the hand-measurements are made at the base of the slope, and it indicates slight cost savings with LiDAR. If repelling down the slope was involved to collect the discontinuity orientation measurements, then additional cost savings would be expected with LiDAR.

THE ACCURACY OF LIDAR-GENERATED DATA

For extracting fracture information from point clouds, a key measure of accuracy is the error in the estimation of a fracture's strike and dip (or dip and dip direction). As discussed earlier in this chapter, Figure 5 compares fracture orientation data measured by hand with LiDAR generated fracture orientation data (white vs black stereonets, respectively). Overall, the location of major structural features appear to differ by less than 5 degrees between hand-measurements and LiDAR generated data. Of course, the hand-measured results themselves have errors that could be as large as 5 degrees. Therefore, the discussion in this section focuses on errors in LiDAR-generated results alone.

Errors in the LiDAR results are due to three primary sources:

- 1. Instrument accuracy and field settings
- 2. Procedures and accuracy of point cloud registration
- 3. Software and procedures used for processing point clouds

Each of these errors are briefly discussed below:

Instrument accuracy and field settings

For a typical scan of a rock face, often over 1000 laser points will intersect large fracture surfaces, while less than 50 points may intersect smaller surfaces. It is important to understand how the number of laser points intersecting a fracture surface and the error of the laser impact the accuracy in the estimation of the strike and dip of the plane. For this purpose a Monte-Carlo based computer model has been developed to determine the error in the calculation of strike and dip, based on a 3D laser scanner with given distance and position accuracies and a fracture plane with a given size and distance from the scanner. Details of the model are described in Kemeny et al. (2003). Here we consider two fracture sizes, both with a point density of about 2 cm (the recommended point spacing described in Chapter 5). In the first case 724 laser points intersect a $0.5 \times 0.5 \text{ m}^2$ fracture, and in the second case 100 laser points intersect a $0.2 \times 0.2 \text{ m}^2$ fracture. Scanner position and distance accuracies of ± 1.5 cm are assumed. This is a large error, and most 3D laser scanners are capable of scan accuracies less that this (see Table 1 and Appendix A).

For the case of 724 laser points hitting the $0.5 \times 0.5 \text{ m}^2$ fracture plane, the Monte-Carlo model showed a mean variation in dip from the actual dip of 0.19 degrees with a standard deviation of 0.03, and a mean variation in dip direction of 0.1 degrees with a standard deviation of 0.015. For the case of 100 laser points hitting the 0.2 x 0.2 m² fracture plane, it shows a mean variation in dip direction of 0.3, and a mean variation in dip direction of 0.3, and a mean variation in dip direction of 0.3. Overall these results are very promising and indicate that errors in the strike and dip less than one degree should be able to be attained even with small fracture surfaces, using almost any of the 3D laser scanners available today. It should be noted that the model does not consider some other sources of possible error, including atmospheric and temperature errors, or the errors discussed in the next two sections below.

Point cloud registration errors

This is an important source of error, and this error affects the calculated fracture orientations for all fractures regardless of their size. The error in the estimation of fracture orientation will depend on the registration method that is used. For instance, if registration is based on Brunton measurements (measurements of objects in the scene or of the scan direction itself), then the error will be ± 2 degrees or more. The most common method of scanner registration is to use 3 or more surveyed points (3D similarity transform). If three points are used, and assuming a surveying error of ± 1.5 cm, 3D similarity transformation results indicate a maximum deviation in strike and dip of about ± 0.2 degrees for a typical scan taken at a distance of 30 meters. This is very reasonable, and if more targets are used the errors should be even smaller. The errors associated with other methods of scanner registration are discussed in Reshetyuk (2006).

Software and procedures used for processing point clouds

Differences in how the point cloud is analyzed to determine fracture orientation results in large differences in the estimation of the strike and dip of a fracture surface. One method is to pick three points on a fracture and determine the orientation of the plane made by these three points. Because actual rock fracture surfaces are not flat planes, this technique will show large variations depending on the roughness of the surface and which three points are selected. A better method is to select all the points that make up the fracture and calculate the best-fit plane through those points. This method will also show variations because "selecting all the points that make up a fracture" is not a straightforward task, particularly near the edge of the fracture. If an automated routine is used to select the points that make up the fractures (such as the automated routine in Split FX), then changing the parameters in the routine will result in differences in the calculated best-fit orientations.

A COMPARISON OF LIDAR AND PHOTOGRAMMETRY

LiDAR and photogrammetry both produce a high-resolution 3D rendering of a scene of interest, but they are based on very different principles. As described in Chapter 2, a LiDAR point cloud is based on the reflections of pulses of laser light that are emitted from a scanner. Also, photo draping techniques can then be used to drape a high-resolution digital image onto a point cloud, as described earlier in this chapter. Many types of analyses can be conducted with the point cloud alone, including the determination of discontinuity orientation, roughness, length and spacing and block size. The draped photo can be used to determining discontinuity orientations for structures that have no exposed surfaces (such as a joint set in the scanner shadow zone) as well as assisting with the interpretation of geology, major structures (such as faults), and other things.

In photogrammetry, the 3D coordinates of a scene are determined from digital images taken of the same scene from different directions. In particular, information on the 3D coordinates is determined from the parallax, which is the change of angular position of two observations of a single object relative to each other. Details on photogrammetry can be found in Faugeras (1996) and many others. In the field, special stereo cameras can be used that have two lenses at a fixed

distance and orientation relative to each other. Today it is more common to use a standard digital camera and take multiple images of a scene from arbitrary directions and positions. The multiple camera positions are then determined using a technique called bundle adjustment that involves "feature matching" in overlapping areas of the images. Photogrammetry software specifically designed for extracting geotechnical information from digital images include 3G (www.3gsm.at), Siro Vison (www.csiro.au), and Adam Technology (www.adamtech.com.au). Photogrammetry software ranges in price from \$5,000 to over \$50,000. A standard high-resolution camera can be used for field surveys, which can range in price from \$500 to over \$5000, depending on resolution and features.

A brief description of some of the differences between LiDAR and photogrammetry and the impact of these differences on highway slope stability analyses are given below.

1. LiDAR emits its own light, as opposed to photogrammetry, where either natural lighting is used or an external light source (such as flash lighting) is used. This can result in some differences. First of all, when scanning a slope that has vegetation, the LiDAR light can penetrate through small openings between the vegetation to provide information on the soil or rock underneath. Photogrammetry, on the other hand, will only give this information if there is enough natural light available behind the vegetation. Secondly, because photogrammetry relies on multiple images of the same scene, lighting differences can occur due to changes in light in different directions or changes in lighting between the time the multiple images are taken. Thirdly, when imaging an underground excavation, LiDAR has the advantage that no external light source is required (LiDAR scans can be conducted in the dark).

2. Photogrammetry needs to view a portion of a scene from a least two directions in order to determine the 3D coordinates of that portion of the scene. LiDAR can determine 3D coordinates from a single viewing angle. This can pose problems with photogrammetry when there are large variations in topography over small areas, such as in areas of dense vegetation or rock rubble.

3. Because images are taken from different angles with photogrammetry, the 3D DTMs from photogrammetry may not have as many areas of no data (scanner shadow zones) compared with a LiDAR scan from a single viewing direction. To address this problem, LiDAR scans can also be taken from different viewing angles, as discussed earlier in this chapter.

4. In the field, a LiDAR survey takes about the same amount of time as a photogrammetry survey. Because registration is required for both methods, much of the time in the field is taken up with issues involved with 3D registration (placing and surveying of targets, for example). The automatic output from a LiDAR scan is a point cloud, and no processing is required in producing a point cloud file. To produce 3D information from photogrammetry, on the other hand, many steps are required that require time and expertise with photogrammetry software. Photogrammetry also requires camera calibration, a pre-field step not required for LiDAR surveys. Once a 3D model is produced, the analysis of the model to extract geotechnical information is very similar between LiDAR and photogrammetry. Overall, if photo draping is not used in the LiDAR analysis, then the LiDAR survey and processing will take less manhours and require less software training than the equivalent photogrammetry survey. If photo draping

is used as part of the LiDAR analysis, this will increase the manhours and amount of software training for using LiDAR for highway rock slope stability.

5. The hardware are significantly less expensive for photogrammetry, consisting of only a high resolution digital camera and associated field equipment (tripod, etc.). The software costs for photogrammetry can be either cheaper or more expensive than LiDAR, depending on the specific software packages that are used with each method. The total cost of LiDAR survey can be cheaper or more expensive than an equivalent photogrammetry survey depending on many factors, including total manhours, software costs, and how the cost of the LiDAR equipment is calculated (it may be shared with other purposes or rented, for example).

6. The final accuracy of a 3D model, whether it comes from photogrammetry or LiDAR, depends on many factors, including the specific hardware and software used, the method and accuracy of scanner registration, and the specific field procedures. Based on published accuracies by scanner manufacturers (Appendix A) and photogrammetry software companies (see web sites listed above), it should be possible to get the equivalent accuracy from both methods.

CHAPTER 6 – EXPECTED ADVANCES IN THE NEXT 5 YEARS

This section contains some discussion about expected future improvements to LiDAR hardware and software in the next few years. This is based on discussions and presentations that took place with hardware and software manufacturers at the following meetings and workshops:

- Workshop on Laser and Photogrammetric Methods for Rock Face Characterization, Golden, CO (June 17-18, 2006)
- 5th International Visualization in Transportation Symposium and Workshop, Denver, CO (October 23-26, 2006)
- LiDAR Spar Point Conference, Sugarland, TX (March 26-27, 2007)
- Workshop on LiDAR and Photogrammetry Methods for Rock Engineering, Vancouver, Canada (May 26-27, 2007).
- LiDAR Spar Point Conference, Houston, TX (March 3-5, 2008)

Overall, future improvements to LiDAR technologies fall into the following categories:

- Hardware improvements;
- Multi-sensor fusion;
- Mobile scanning;
- Improvements to point cloud processing software, including integration with CAD and GIS;
- 3D mashups; and
- Standards.

Each of these topics, as it relates to using LiDAR for highway rock slope stability, is discussed below.

HARDWARE IMPROVEMENTS

Recent improvements to LiDAR hardware include the following:

- Time-of-flight scanners with capture rates up to 50,000 pps
- Phase shift scanners with capture rates up to 1 million pps
- Increased range in time of flight scanners, up to 2 km
- Increased range in phase shift scanners, up to 50 meters
- Increased accuracies in time of flight and phase shift scanners

This trend is expected to continue in the future. The best information on recent hardware improvements is available from the scanner manufacturers web sites (see Chapter 2).

MULTI-SENSOR FUSION

LiDAR manufacturers are currently adding more and more useful features to the LiDAR units. These features include built in surveying capabilities, built in GPS, automated pan and tilt movement, built in tilt and compass bearing measurements, better onboard camera, built in motion compensators, etc. Already the fusion of ground-based LiDAR and high-resolution digital imaging has occurred, resulting in high-resolution, 3D, photo-quality digital terrain models. Also, the fusion of ground-based and airborne LiDAR is starting to take place. Future sensor fusion may include the integration of hyper-spectral imaging, radar and other sensor data.

MOBILE SCANNING

Mobile scanning (also referred to as dynamic scanning) includes the ability to scan from a moving ground-based vehicle or boat. Several of the scanner manufacturers are now involved with the production of mobile scanning units. From POB (2007):

Several manufacturers, companies and agencies offer dynamic scanning solutions. Optech Inc. (Vaughan, Ontario, Canada) recently announced a dynamic scanner called the ILRIS-3Dmc. The Canadian manufacturer is promoting the use of its motion-compensated scanner for three common applications: stop-and-scan, mobile platform vertical scan (i.e., oil rig from a boat) and mobile platform horizontal scan (i.e., road surface survey from a vehicle). Riegl offers several scanners that can be deployed as dynamic scanners, and that have successfully been used on boats to inventory waterway assets and to geo-reference obstructions (such as semi-submerged rocks) that cannot be mapped directly from a boat. The Nottinghamshire, UK company 3D Laser Mapping has released a system called the StreetMapper Mobile LiDAR mapping system based on Riegl scanners. It offers a turnkey survey vehicle with all the necessary components mounted on it or as a combination of the sensor platform and the electronic rack. The overall weight of its system is about 150 kg (330 lb), which is small enough to operate from normal passenger cars.

The Federal Highway Administration's Turner-Fairbank Highway Research Center is also using dynamic LiDAR. The agency has developed a system called the Digital Highway Measurement vehicle. This multi-sensor system uses laser scanners and Macrotexture lasers (lasers with a submillimeter beam diameter) to profile the texture of highway surfaces. It is also being used to explore the use of new 3D ground penetrating radar for subsurface evaluations down to 6 to 9 m (19.7 to 29.5 ft) for locating utilities and pavement thickness. Data collection like this would represent complete roadway cross-section and would be very valuable to highway designers.

The accuracy of the final point cloud and subsequent drawings and models is dependent on many factors. One factor is the error from a single laser scanner measurement. This relative accuracy can be provided by the laser scanner manufacturer; for example, this can be as small as 10 mm for a Riegl scanner. The ability to accurately measure objects in the point cloud is also dependent on the point density, which is affected by vehicle and scanner speed. The slower the vehicle goes, the denser the point cloud will be. The absolute accuracy of the data in relation to a local coordinate system is dominated by the navigation system. This can be as low as 3 cm under favorable conditions and might be as high as 0.5 m under poor conditions.

3D MASHUPS

"Mashups" are new kinds of web-based applications that combine data from more than one source and provide an integrated tool for information searching, data retrieval and analysis (IBM, 2006). 3D mashups combine LiDAR or other 3D results with other types of information such as maps and 2D images. Google Maps, for example, could be combined with LiDAR scanning results and slope stability software to rapidly determine areas where slope problems are likely to occur. Repeated scans could be used to provide time-dependent maps of change and rockfall hazard. There are some technical challenges involved with mashups with integrating the different types of information.

IMPROVEMENTS IN POINT CLOUD PROCESSING SOFTWARE

Point cloud processing software has improved greatly in the past few years and is expected to continue to improve in the near future. More CADD tools are expected to be implemented into the point cloud processing software, and CADD software is now being developed that can integrate point clouds and CADD objects (Autodesk Navisworks, for example). Also, the ability to use smaller amounts of data in memory, either through compression or dynamic viewing windows, to allow large clouds to be viewed and processed on standard computers. Advanced filters is another area that needs to be developed, such as filters to automatically remove vegetation from rock slope point clouds.

STANDARDIZED DATA FORMATS

This is a major subject that needs to be tackled in the near future. The xyz ASCII format for point clouds as shown in Chapter 2 is widely used and accepted, but does not contain draped photo information, as well as other header information. Possible standard formats for ground-based LiDAR data include .LAS (used for airborne LiDAR), 3D TIFF, 3D JPEG, .AAF (advanced authoring format), .X3D, VRML and GeoVRML.

Other needs in terms of data standards include a highly compressed data format for efficient archiving, a standard terminology for ground-based LiDAR and the various kinds of output data, better integration between LiDAR point clouds and CADD software, better integration with mapping, geospatial applications (see Spar Point, 2007 for more details).

CHAPTER 7 – CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

In this final report the use of ground-based LiDAR (also called 3D laser scanners) to obtain highway rock slope geotechnical information has been reviewed. This included discussions of currently available LiDAR hardware and software, the current state of LiDAR for highway geotechnical applications (rock mass characterization, rockfall characterization, as-built 3D measurements), best-practices for field scanning and for point cloud data processing, and expected trends in the industry in the near future.

At the beginning of this report a "wish list" was given of benefits that a new technology should possess in order to be useful to FHWA for highway rock slope stability studies. Conclusions are now made for each item on the list with regards to the use of ground-based LiDAR.

Automatic data acquisition over entire slope

It was demonstrated in Chapter 4 that some of the most important types of geotechnical information that is currently being collected by hand can be acquired from LiDAR point clouds and associated digital images. This includes detailed information about rock discontinuity orientation, roughness, length, spacing and block size. In many cases, this information can be automatically extracted from LiDAR point clouds using currently available point cloud processing software. For example, using the Split FX software, discontinuities in a point cloud can be automatically delineated and the orientations plotted on a stereonet. This information can then be exported to rock slope stability software. It was also demonstrated in Chapter 5 that fracture orientation errors of less than one degree could be achieved if at least three surveyed targets are used as part of the scanner registration. Currently, the determination of discontinuity roughness, length, spacing and block size is semi-automatic and involves the use of hand editing tools in the point cloud processing software.

Remote data acquisition for improved safety

Ground-based LiDAR collects data at a safe distance from the slope. Most of the ground-based LiDAR units now available have the ability to scan slopes from a distance of at least 50 meters, which is sufficient for many highway slope applications. Many scanners have a range of up to 200 meters and a few scanners have a range of 1 km or more. Details on scanner range are provided in Appendix A. Data collection for scanner registration (surveyed targets, backsighting, or scanner orientation measurements) can also be conducted at a safe distance from the slope.

Rapid data collection

A typical scan of a 20 m high by 30 m wide highway slope with a time-of-flight scanner takes about 10 minutes (assumes 2 cm point spacing and 2500 points per second). This same scan with a phase-shift scanner would take less than 20 seconds (assumes 2 cm spacing and 100,000

points per second). Additional time in the field is required to collect data for scanner registration. Depending on the method for scanner registration, this can take as little as a few extra minutes. Processing the data to extract geotechnical information can also be conducted very rapidly. It was shown in Chapter 4 that automatically delineating the fractures in a point cloud and plotting the orientations on a stereonet takes only a few minutes. A complete analysis, including the extraction of discontinuity roughness, fracture length and spacing, block size and photo draping can be conducted in several hours.

New technologies for data collection and processing easy to learn and operate

3D laser scanners are very easy to operate, as discussed in Chapters 2 and 5. Most scanners have a very user-friendly interface and only require a few settings before scanning, such as the scan region of interest, the point cloud spacing, and the camera exposure parameters. Appropriate personnel to conduct field LiDAR surveys could include field technicians, field surveyors, geologists and geotechnical personnel. Processing point clouds to extract geotechnical information using point cloud processing software is also fairly easy to learn but does require some geotechnical expertise. Users need to have a basic understanding of rock engineering principles associated with rock masses and rock discontinuities.

Able to provide a high-resolution 3D Digital Terrain Model (DTM) of a highway slope or rock outcrop that could be compared with future DTMs as the slope ages and deteriorates

An important feature of ground-based LiDAR is the ability to drape a high-resolution digital image onto a point cloud, producing a high resolution, 3D DTM of the scanned slope. This DTM represents a 3D snapshot of the slope at a particular time, which can be compared with DTMs taken a later time. Point clouds taken at different times, for instance, can be subtracted to produce a difference point cloud. As described in Chapter 4, the difference point cloud can be used to analyze rockfall, slope weathering, or the volume change after rock excavation.

Cost Effective

It was shown in Chapter 5 that 3D laser scanning can be very cost effective compared with traditional scanline mapping and photogrammetric surveys. Even though LiDAR hardware is expensive, the cost of the hardware can be shared between different uses and different offices. Scanner rental is also an option. Point cloud processing software is relatively inexpensive and in many instances is less expensive than photogrammetric software.

Overall Conclusions

It is concluded that there are many benefits to using ground-based LiDAR to assist with highway rock slope stability studies. Specific recommendations with regards to utilizing ground-based LiDAR for highway slope stability projects are given below.

RECOMMENDATIONS

Field Scanning

Field LiDAR surveys can be conducted by either FHWA personnel or outside surveying contractors. In either case, the best practices described in Chapter 5 should be followed closely, along with the documented procedures for the particular scanner that is used. With regard to scanner registration, there are three primary choices, as listed below:

- 1. Three or more surveyed targets in the scanned scene.
- 2. Backsighting to known benchmarks to establish the scanner position and and scan direction
- 3. Using a compass to establish the scan direction (normally by measuring the bearing and tilt of the scanner itself)

If established benchmarks are available at the location where scanning is to be conducted, then either method 1 or 2 is recommended, since they result in a more accurate registration than method 3. Method 3 only takes a few minutes and can be used as a backup registration method. Method 3 can be used as the primary method when benchmarks are not available, or when scanning and scanner registration must be conducted very quickly.

Point Cloud Processing Software

Data processing using point cloud software is relatively straightforward, however it is recommended that the personnel involved with LiDAR data analysis have training in rock engineering principles and design. Data processing using point cloud software can be conducted by either FHWA personnel or outside consultants. Either way, the best practices described in Chapter 5 should be followed. At the present time, only the Split FX software is designed specifically for extracting geotechnical information from LiDAR point clouds, and its use is recommended at this time. In the future, other software packages may also have these capabilities. Even though all examples shown in this report were conducted using the Split FX software, much of the analysis could be conducted with the more generic point cloud processing or CADD software. However, this is not recommended since it will involve significant manhours in software training and processing (finding hundreds of fracture planes in a point cloud by hand, for instance, could take an order of magnitude more time than utilizing automated methods).

Additional Recommended Studies

There are several areas that warrant additional research and case studies, as described below.

Comparing Scanner Registration Methods

As listed above, there are three primary methods for scanner registration, and each method has specific procedures and issues. A detailed case study should be conducted to determine the

advantages and disadvantages of each method. Also, the specific accuracies of each method should be determined for a variety of field conditions, as well as determining best practices for each method to optimize accuracy and the time spent in the field.

"Start to Finish" Case Study for Rock Slope Stability

As a full assessment of the procedures described in this report, a "start-to-finish" slope stability case study should be conducted for a specific highway slope. This would include conducting a LiDAR survey of a slope, extracting geotechnical parameters, conducting a slope stability analysis, and writing a report on the results. Many case studies have been conducted using ground-based LiDAR in many different rock types. These case studies have evaluated different aspects of utilizing LiDAR for rock slope stability, but no single case study has evaluated all the field and processing procedures involved. Also, no case studies have been conducted with close collaboration with FHWA personnel and procedures.

Extracting Additional Information From LiDAR Point Clouds

There is the potential to extract additional information from LiDAR that would be useful for rock slope stability studies. This additional information includes:

- Degree of slope weathering (slight, moderate, significant)
- Discontinuity fill (mineral composition of fill and thickness of fill)
- Geology (mineral composition)
- Slope movement (slope displacement, velocity and acceleration)
- Incorporation of slope stability equations in point cloud processing software (allows slope stability visualization on point clouds)
- Automation of the extraction of information currently extracted using hand tools (roughness, length and spacing distributions, block size)

It is recommended that research be conducted in the areas described above.
REFERENCES

- Badger, T.C. and Lowell, S. 1992. Rockfall Control Washington State. In Rockfall Prediction and Control and Landslide Case Histories, Transportation Research Record, Nationa Research Council, Washington, No 1342, 14-19.
- Barton, N.R., Lien, R. and Lunde, J. 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mech. 6(4), 189-239.
- Besl, P. J. and McKay, N. D., 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Recognition and Machine Intelligence 14(2), pp. 239–256.
- Bieniawski, Z.T. 1989. Engineering rock mass classifications. New York: Wiley.
- Blythe, D. 1999. Advanced Graphics Programming Techniques Using OpenGL. Siggraph 1999, http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/notes.html
- CDOT. 2005. I-70 Georgetown Incline Rockfall Mitigation Feasibility Study, Yeh and Associatees Project NO. 24-100, prepared for Colorado Dept. Transportation.
- Donovan, J., Kemeny, J., and J. Handy. 2005, The Application of Three-Dimensional Imaging to Rock Discontinuity Characterization, Alaska Rocks 2005: The 40th U.S. Symposium on Rock Mechanics, Anchorage, AL.
- Einstein, H. 1993. Modern Developments in Discontinuity Analysis the Persistence-Connectivity Problem, In Comprehensive Rock Engineering, Principles, Practice, & Projects. Volume 3: Rock Testing and Site Characterization, pp. 193-213, Oxford, Pergamon Press.
- Faugeras, O. 1996. Three Dimensional Computer Vision: A Geometrical Viewpoint, The MIT Press, Cambridge, Mass.

Gonzalez, R. C. and P. Wintz. 1987. Digital image processing, 2 edn. Addison-Wesley, Boston.

- Goodman, R.1989. Rock Mechanics, 2nd ed., Wiley.
- Goodman, R. and S. Kieffer. 2000. Behavior of rock in slopes, J. Geotech. Geoenv. Eng., Vol. 126, No. 8, pp. 675-684.
- Gupta, N., R. Dahmani, M. Gottlieb, L. Denes, B. Kaminsky, P. Metes, 1999. Hyperspectral imaging using acousto-optical tunable filters. In Proceedings of SPIE, v. 3718, 10.
- Hadjigeorgiou, J., Lemy, F., Co te', P., and X. Maldague. 2003. An Evaluation of Image Analysis Algorithms for Constructing Discontinuity Trace Maps Rock Mech. Rock Engng., 36 (2), 163–179.
- Haneberg, W.C. 2007. Directional roughness profiles from three-dimensional photogrammetric or laser scanner point clouds, Proceedings 1st Canada-U.S. Rock Mechanics Symposium, Vancouver, B.C., 27-31 May, pp. 101-106.
- Henwood, J., DeMarco, M., and C. Martinez. 2006. Shrink and Swell Estimation: Practices and Procedures, 57th Annual Highway Geology Symposium, Breckenridge, CO.
- Hoek, E. 2007. Practical Rock Engineering,

http://www.rocscience.com/hoek/PracticalRockEngineering.asp

- Hudson, J. and J. Harrison. 2000. Engineering Rock Mechanics. Pergamon Press, 896 pages.
- IBM. 2006. Mashups: The new breed of Web app. An introduction to mashups, http://www.ibm.com/developerworks/xml/library/x-mashups.html
- Jaboyedoff, M., Metzger, R., Oppikofer, T., Couture, R., Derron, M., Locat, J., and D. Turmel. 2007. New insight techniques to analyze rock slope relief using DEM and 3D imaging cloud points: COLTOP-3D software, Proceedings 1st Canada-U.S. Rock Mechanics Symposium, Vancouver, B.C., 27-31 May, pp. 61-68.

- Kemeny, J. and Post, R. 2003. Estimating Three-Dimensional Rock Discontinuity Orientation from Digital Images of Fracture Traces, Computers & Geosciences, 29/1, pp. 65-77.
- Kemeny, J., Norton, B. and K. Turner. 2006a. Rock Slope Stability Analysis Using Ground-Based LiDAR and Digital Image Processing, Felsbau – Rock and Soil Engineering, Nr. 3/06, pp 8-15.
- Kemeny, J. 2003. The Time-Dependent Reduction of Sliding Cohesion due to Rock Bridges Along Discontinuities: A Fracture Mechanics Approach, Rock Mechanics and Rock Engineering, Volume 36/1, pp. 27-38.
- Kemeny, J., Monte, J., Handy, J. and S. Thiam. 2003. The use of digital imaging and laser scanning technologies in rock engineering. International Symposium on the Fusion Technology of Geosystem Engineering, Rock Engineering and Geophysical Exploration, Seoul, Korea, Nov. 18-19.
- Kemeny, J. 2005. Time dependent drift degradation due to the progressive failure of rock bridges along discontinuities, Int. J. Rock Mech. Min. Sci., Vol 42, pp 35-46.
- Kemeny, J., Turner, K. and B. Norton. 2006b. LiDAR for Rock Mass Characterization: Hardware, Software, Accuracy and Best-Practices, Proceedings of the Workshop on Laser and Photogrammetric Methods For Rock Mass Characterization: Exploring New Opportunities, Golden, CO.
- Kemeny, J., Donovan, J. and C. Rodríguez. 2006c. Application of Ground-Based LiDAR for Pre-Blast Rock Mass Characterization, Proceedings of Fragblast 8, the 8th International Conference on Fragmentation by Blasting, Santiago, Chile.
- Kemeny, J., Mofya, E. and J. Handy. 2003. The use of digital imaging and laser scanning technologies for field rock fracture characterization, Proceedings of Soil and Rock America 2003 (12th PanAmerican Conference on Soil Mechanics and Geotechnical Engineering and the 39th US Rock Mechanics Symposium), Eds. J. Culligan, H. Einstein, A. White, Massachusetts Institute of Technology, Cambridge, MA, pp. 117-122.
- Kottenstette, J.T. 2005. Measurement of Geologic Features using Close Range Terrestrial Photogrammetry, The 40th U.S. Symposium on Rock Mechanics (USRMS): Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions, held in Anchorage, Alaska, June 25-29, 2005.
- Monte, J. 2004. Rock mass characterization using laser scanning and digital imaging data collection techniques, M.S. Thesis, University of Arizona.
- Nasrallah, J. 2007. Rock slope stability and monitoring using 3D laser scanners and digital imaging, M.S. Thesis, University of Arizona.
- Nicholas, D.E. and D.B. Sims. 2001. Collecting and using geologic structure data for slope design, in Slope Stability in Surface Mining, ed. by W.A. Hustrulid, M.K. McCarter and D.J.A. Van Zyl, SME, Littleton, CO, pp11-26.
- Pack, R.T., Boie, K. (2002) Utah rockfall hazards inventory Phase I. Utah Department of transportation Research Division, Report No. UT-03.01.
- Patterson, K., Andrew. R., Ortiz, T. 2002. Rockfall hazard and evaluation methods, the Georgetown incline, Colorado. Geological Society of America, Rocky Mountain Section 54th Annual Meeting, May 7-9.
- Patton F.D. 1966. Multiple modes of shear failure in rock. In: Proc First Cong Int Soc Rock Mech, vol 1, Lisbon, p. 509-513.
- Pfeifer, N., Gorte, B., Oude Elberink, S. (2004): Influences of Vegetation on Laser Altimetry Analysis and Correction Approaches. The International archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part 8/W2, pp. 283-287.

POB. 2007. Point of Beginning, Scanning in Motion, by Mitchell Wimbush, September 1, 2007. http://www.pobonline.com/Articles/Features/BNP_GUID_9-5-2006 A 100000000000159896

POB. 2008 Point of Beginning 2008 Laser Scanner Survey, http://laser.jadaproductions.net/

- Pötsch, M., Schubert, W. and A. Gaich. 2005. Application of metric 3D images of rock faces for the determination of the response of rock slopes to excavation, EUROCK 2005, Brno, Czech. Rep.
- Priest, S. D. 1993. Discontinuity Analysis for Rock Engineering, London, Chapman & Hall
- Reshetyuk, Y. 2006. Investigation and calibration of pulsed time-of-flight terrestrial laser scanners, Licentiate thesis in Geodesym Royal Institute of Technology (KTH), Department of Transport and Economics, Division of Geodesy, Stockholm Sweden.
- Roberts, G. & Poropat, G. 2000. Highwall joint mapping in 3D at the Moura mine using using SIROJOINT. Bowen Basin Symposium 2000 Coal and Mining The New Millennium, Rockhampton, Oct. 2000.
- Rosser, N., Petley, D., and S. Dunning. 2007. The surface expression of strain accumulation in failing rock masses, Proceedings 1st Canada-U.S. Rock Mechanics Symposium, Vancouver, B.C., 27-31 May, pp. 113-120.
- Schuster, R.L., and R.W. Fleming. 1986. "Economic Losses and Fatalities Due to Landslides." Association of Engineering Geologists Bulletin. Vol. 23, No.1, pp. 11-28.
- Slob, S., Hack, H.R.G.K., van Knapen, B., Turner, K. and Kemeny, J. 2005. A method for automated discontinuity analysis of rock slopes with 3D laser scanning. In: Transportation Research Record, 1913(2005)1, pp. 187-208
- Slob, S., Hack, R., and K. Turner. 2002. An approach to automate discontinuity measurement of rock faces using laser scanning techniques, ISRM International Symposium on Rock Engineering for Mountainous Regions – Eurock 2002 Funchal, November 25-28th.
- Spar Point Research. 2007. SparViewTM Vol. 5, No. 13, June 13, 2007 ISSN 1553-8834, http://sparllc.com

Split Engineering LLC, www.spliteng.com

- Thiam, S. 2006. Integration of 2D digital images and 3D LiDAR scanning in rock design, M.S. Thesis, University of Arizona.
- Tse, R. and D. M. Cruden. 1979. Estimating joint roughness coefficients, Int. J. Rock Mech. Min. Sci., 16:303-307.
- Turner, K., Kemeny, J., Slob, S. & Hack, R. 2006. Evaluation and management of unstable rock slopes by 3D laser scanning, Proceedings of the 10th IAEG Congress, Nottingham, United Kingdom, 6-10 September 2006.

Virtual Geomatics. 2008. www.virtualgeomatics.com

APPENDIX A – SPECIFICATIONS OF CURRENT LIDAR HARDWARE

FARO Technologies, FARO Technologies, FARO Technologies, FARO Technologies, Manufacturer 3rdTech Inc. Inc. Inc. Inc. Product DeltaSphere-3000IR Photon Laser FARO Laser FARO Laser FARO Laser Scanner LS 840 Scanner LS 880 Scanner LS 420 Scanner Performance 785nm Laser Wavelength (in nm) 780 785 nm 785nm 785nm 8mW 20 mW 10mW 20mW 20mW Laser Power (in W. mW) FDA Laser Classification (Class) 3R 3R 3R 3R 3R Beam Diameter at Specified Distance from 0.1 in. at 1 ft., 0.28 3.3 mm at exit, 3mm at exit 3mm at exit 3mm at exit the Scanner (0.Y ft at X ft/Ymm at X m) in. at 30 ft. circular Measurement Technique Modulated Beam Phase-shift Phase shift Phase shift Phase shift TOF 120,000 120,000 120,000 120,000 Average Data Acquisition Rate (pps) 15.000 Maximum Data Acquisition Rate (pps) 43.000 120.000 120.000 120.000 120.000 Distance Accuracy at Specified Distance 0.3 in at 40 ft +/- 2mm at 25m +/- 3mm at 25m +/- 3mm at 25m +/- 3mm at 25m (0.Y ft at X ft/Ymm at X m) Position Accuracy at Specified Distance (0.Y 0.35 in at 40 ft +/- 3mm at 25m +/- 3mm at 25m +/- 3mm at 25m ft at X ft/Ymm at X m) Angular Accuracy (degrees-min-sec) 0.015° 0.009° 0.009° 0.009° Minimum Range (feet/m) 10m 0.6m $1 \, \mathrm{ft}$ 0.6m 0.6m Maximum Range (feet/m) at Specified 54 ft at 85% 40m at 90% 76m at 90% Reflectivity (specify 4%, 10%, 30% or 80% reflectance; 35 ft at 80M20m reflectivity target reflectivity target targets) 30% reflectance Field of View (vertical angle) (degrees-min-290° 320 degrees 320° 320° 320° sec) Field of View (horizontal angle) (degrees-360° 360 degrees 360° 360° 360° min-sec) Minimum Vertical Scan Increment (degrees-0.0759 0.009 0.009° 0.009° min-sec) Minimum Horizontal Scan Increment 0.075° 0.00076° 0.00076° 0.00076° (degrees-min-sec) Surface Reflectivity Range (%) .6/11.2 mm rms@ 5 - 99% n/a n/an/a90% Onboard camera for aiming or for creating Yes. Optional - for photomosaic, etc. (single image pixel creating full color, resolution) optional: resolution optional: resolution texture-mapped, optional: resolution computer graphics Yes depends on used depends on used depends on used models and 360 camera camera camera degree panoramic images. Is hardware interoperable with optical total Yes; by using fixed Yes; by using fixed Yes; by using fixed Yes. Compatible; stations and GPS? If yes, how? position methods position methods position methods aligned with tribrach No and/or survedy and/or survedy and/or survedy mount. referenc targets referenc targets referenc targets Is the scanner better for scanning topography As-built surveys As-Built both both both or for as-built surveys? Is software technology for processing data Yes included. Yes yes yes yes from scanner manufacturer? Can scanner be set up over a known point? (E.g., height of instrument, backsight point, Yes/No Yes yes; yes yes; yes yes;yes etc.) If yes, can station information be entered? Can the user specify the field of view and Yes - hoth Yes yes ves yes scan density? Maximum sample density (mm/ft) depends on object depends on object depends on object 15 points/degree distance distance distance Does the scanner support scan filters (e.g., Yes - range, intensity. Yes yes yes yes range, intensity, area of interest)? FOV Does the scanner have interchangable parts yes; fully modular set yes; fully modular set yes; fully modular se that allow for upgrades (e.g., the camera, up; distance sensor, up; distance sensor, up; distance sensor, other modular components, etc.) PC module, mirror PC module, mirror PC module mirror Yes Yes module, base module: module, base module; module, base module: color option; WiFi color option; WiFi color option; WiFi option option option Ethernet; WiFi Ethernet; WiFi Ethernet; WiFi Communication Method (e.g., ethernet card, Ethernet for range Wireless, internal firewire, wireless) data / USB for color hard drive, ethernet (wireless) (wireless) (wireless) Does the scanner operate when out of level?

Table 2. 2008 LiDAR Hardware Summary Sets 1 to 5 (Point of Beginning website).

Yes

yes; yes

yes; yes

ves;ves

Yes / No

Does it have compensators?

Manufacturer	3rd Tech	FARO Technologies, Inc.	FARO Technologies, Inc.	FARO Technologies, Inc.	FARO Technologies, Inc.
Product	DeltaSphere-3000IR	Photon Laser	FARO Laser	FARO Laser	FARO Laser
	_	Scanner	Scanner LS 840	Scanner LS 880	Scanner LS 420
Resolution and range of compensators	DT A		resolution 0.001°;	resolution 0.001°;	resolution 0.001°;
	NA		range +/- 15°	range +/- 15°	range +/- 15°
Environmental					
Storage Temperature Range (degrees F/C)	32 to 113°F		0°C to 60°C	0°C to 60°C	0°C to 60°C
Operating Temperature Range (degrees F/C)	32 to 113°F	5 degrees C to 40 degrees C	5°C to 40°C	5°C to 40°C	5°C to 40°C
Humidity (%)	Non-condensing	non condensing	non condensing	non condensing	non condensing
Ambient Light	Interior lighting or shade to total darkness. Direct sunlight reduces the range.		darkness until sunlight	darkness until sunlight	darkness until sunlight
General					
Scanner Dimensions (LxWxH) (inches/cm)	14 x 14 x 4 in	15.7	400mm x 160mm x 280mm	400mm x 160mm x 280mm	400mm x 160mm x 280mm
Scanner Weight (pounds/kg)	22 lbs	35lb	14.5kg	14.5kg	14.5kg
Is scanner recommended for mounting on standard survey tripod? If no, what is recommended stand?	Yes - or photographic tripod	Yes	yes	yes	yes
AC Power Requirements (volts/watts)	100-240 V (40 - 65 w)		90V to 280V; 60W	90V to 280V; 60W	90V to 280V; 60W
DC Power Requirements (volts/watts)	12 V (40 - 65 w)	24V	24V DC, 60W	24V DC; 60W	24V DC, 60W
Batteries	Standard 12 V battery	Nickel Metal Hydride	available	available	available
Battery Dimensions (LxWxH) (inches/cm)	Variable	-	110mm x 320mm x 420mm	110mm x 320mm x 420mm	110mm x 320mm x 420mm
Battery Weight (pounds/kg)	Variable		12.0kg	12.0kg	12.0kg
Battery Life (hours)	4 - 8 typical	6 hours	8 hrs.	8 hrs.	8 hrs.
Are batteries hot-swappable? (Y/N)	No		N	N	N
Computer Requirements for Control (handheld option?)	Standard PC/laptop, Win XP/Vista, ethernet, USB for color option.	Ethernet, WLAN, by PC or PDA	Standard Windows PC (or PDA with WiFi)	Standard Windows PC (or PDA with WiFi)	Standard Windows PC (or PDA with WiFi)
Computer Requirements for Data Processing	Standard PC/laptop,Win XP/Vista, 512 MB memory, 3D graphics card for display performance, 3-button mouse	Pentium III, 700 MHz, 256 MB RAM	OpenGL graphics card, 1GB RAM recomended	OpenGL graphics card, 1GB RAM recomended	OpenGL graphics card, 1GB RAM recomended
Standard Accessories (list)	Wheeled shipping crate with handle, external power supply, auxiliary auto power cable, quickrelease tripod mount, cables, SceneVision-3D software, safety glasses.	Power supply, connector box, LEMO cable, Ethernet cable, 2 laser protection glasses, FaroRecord software, FaroScene software, Inclination Sensor	Power supply, connector box, LEMO cable, Ethernet cable, 2 laser protection glasses, FaroRecord software, FaroScene software	Power supply, connector box, LEMO cable, Ethernet cable, 2 laser protection glasses, FaroRecord software, FaroScene software	Power supply, connector box, LEMO cable, Ethemet cable, 2 laser protection glasses, FaroRecord software, FaroScene software
Optional Accessories (list) Warranty	Calibrated professional digital camera and lens, camera mount, additional software, tripod, laptop stand, dolly, laptop, onsite training.	carbon fiber tripod, power base, ipod touch, nikon digital cam era, backpack	Tripod, color option, reference spheres, software packages and many other accessories.	Tripod, color option, reference spheres, software packages and many other accessories.	Tripod, color option, reference spheres, software packages and many other accessories.
	12 months	optional additional 3vr	1yr	1yr	1yr

Table 2. 2008 LiDAR Hardware Summary Sets 1 to 5 (*Point of Beginning* website).- continued –

Manufacturer	Leica Geosystems	Leica Geosystems	Maptek I-Site 3D Laser Imaging	Maptek I-Site 3D Laser Imaging	Measurement Devices Ltd
Product	HDS6000	Leica ScanStation 2	I-Site 4400LR Laser Scanner	I-Site 4400CR Laser Scanner	QuarrymanPro / LaserAce Scanner
Performance					
Laser Wavelength (in nm)	650, 690 nm	532	905	905	905nm
Laser Power (in W, mW)	< 4.75mW	1 mW, avg.	10mW	10mW	
FDA Laser Classification (Class)	3R	3R	3R	3R	1M
Beam Diameter at Specified Distance from	3mm at exit: 8mm	Dit		bit	46mm at exit
the Scanner (0 Y ft at X ft/Ymm at X m)	@25m: 14mm @50m	6 mm at 50 m [1]	140mm at 100m	140mm at 100m	173mm at 50m
Measurement Technique	Phase shift	Pulsed laser: TOF	Time of flight	Time of flight	Time of flight
Average Data Acquisition Rate (pps)	125,000	Dependent on scan	4400	4400	250pps
Maximum Data Acquisition Rate (pps)	up to 500.000	Up to 50.000 [2]	4400	4400	250nns
Distance Accuracy at Specified Distance	4mm at 000/ allesda	0 10 50,000 [2]	4400	4400	250pps
(0.Y fl at X fl/Ymm at X m)	4mm at 90% abedd up to 25m; 5mm at 18% up to 25m; 5mm at 90% up to 50m; 6mm at 18% up to 50m	4 mm at 50 m [3]	20mm at 50 m (1), 50mm at 500m	20mm a 50m (1), 50mm at 500m	5cm
Position Accuracy at Specified Distance (0.Y ft at X ft/Ymm at X m)	6mm, 1m to 25m range; 10mm to 50m range	6 mm at 50 m [4]	50mm at 100m (1)	50mm at 100m (1)	67mm at 50m
Angular Accuracy (degrees-min-sec)	0.0071 degree (25 seconds)	0.0034 degree (12 seconds)	0.04	0.04	0.02degrees
Minimum Range (feet/m)	0.1m	< 1 m	5m	2m	5m
Maximum Range (feet/m) at Specified Reflectivity (specify 4%, 10%, 30% or 80% targets)	79m @90%; 50m @18% albedo	300 m at 90%; 134 m at 18%	150m at 4%, 700m at 80%	500m at 80%	700m at 90%, 400m at 18%
Field of View (vertical angle) (degrees-min- sec)	310°	270 degree	80	80	-45 to +80 degrees
Field of View (horizontal angle) (degrees- min-sec)	360°	360 degree	360	360	0 to 360degrees
Minimum Vertical Scan Increment (degrees- min-sec)	0.009°	00-00-01 (1 arc second)	0.108 degrees	0.108 degrees	0.05degrees
Minimum Horizontal Scan Increment (degrees-min-sec)	0.009°	00-00-01 (1 arc second)	0.108 degrees	0.108 degrees	0.05degrees
Surface Reflectivity Range (%)	1%-100%	1 - 100%	1-95%	1-95%	1-100%
Onboard camera for aiming or for creating photomosaic, etc. (single image pixel resolution)	Any external digital camera can be used for photo-overlay using Leica Cyclone software	Yes [5]	Integral linear, 40 megapixel (16667x2520)	Integral linear 80 megapixel (16667X4200)	No
Is hardware interoperable with optical total stations and GPS? If yes, how?	Yes, via Leica's X- Function, LandXML and ASCII.	Yes [6]	Yes (2)	Yes (2)	Yes, via software
Is the scanner better for scanning topography or for as-built surveys?	As-built	Excellent for both	Topography	Topography	Topography
Is software technology for processing data from scanner manufacturer?	Yes, Cyclone and CloudWorx Suite	Yes, Cyclone, CloudWorx, Cyclone II TOPO	Yes	Yes	Yes, ModelAce and Face3DPro
Can scanner be set up over a known point? (E.g., height of instrument, backsight point, etc.) If yes, can station information be entered?	Yes, Yes	Yes; yes [7]	Yes/Yes	Yes/Yes	Yes and yes
Can the user specify the field of view and scan density?	Yes	Yes [14]	Yes/Yes	Yes/Yes	Yes
Maximum sample density (mm/ft)	1.6x1.6mm @ 10m, 7.9x7.9mm @ 50m	< 1 mm at 300 m range	190mm at 100m	190mm at 100m	10mm
Does the scanner support scan filters (e.g., range, intensity, area of interest)?	Yes: range, intensity, area	Yes, range, intensity, area	Yes	Yes	Polygon, rectangle, last hit
Does the scanner have interchangable parts that allow for upgrades (e.g., the camera, other modular components, etc.)	Yes: battery, user interface, reflector attachment	[8]	Battery may be upgraded for extreme weather conditions, otherwise no.	Battery may be upgraded for extreme weather conditions, otherwise no.	No
Communication Method (e.g., ethernet card, firewire, wireless)	on-board controls, ethernet, and bluetooth	Ethernet or wireless	Ethernet, Memory stick	Ethernet, Memory stick	Serial

Table 3. 2008 LiDAR Hardware Summary Sets 6 to 10 (Point of Beginning website).

Manufacturer	Leica Geosystems	Leica Geosystems	Maptek I-Site 3D Laser Imaging	Maptek I-Site 3D Laser Imaging	Measurement Devices Ltd
Product	HDS6000	Leica ScanStation 2	I-Site 4400LR	I-Site 4400CR	OuarrymanPro /
			Laser Scanner	Laser Scanner	LaserAce Scanner
Does the scanner operate when out of level? Does it have compensators?	Yes. Integrated tilt sensing and read-out.	Yes; yes, survey- grade [9]	Yes/Yes	Yes/Yes	Operates out of level, manual compensation
Resolution and range of compensators	Dual-axis tilt sensor: selectable on/off; 3.6" resolution	1 second resolution; 5minutes range	20	20	
Environmental					
Storage Temperature Range (degrees F/C)	-20°C to +50°C	+65 to -25 degrees Celsius	-40C to +60C	-40C to +60C	-20 to +70C
Operating Temperature Range (degrees F/C)	0° C to +40° C	+40 to 0 degrees Celsius	-40C (3) to +50C	-40C (3) to +50C	-10 to +45C
Humidity (%)	non-condensing atmosphere	Non-condensing	100% IP65	10 0% IP65	IP66
Ambient Light	any light conditions	Any light conditions	Any	Any	Any light conditions
General					
Scanner Dimensions (LxWxH) (inches/cm)	7.5?D x 11.5? W x 13.8? H, 190mm D x 244mm W x 351.5mm	370mm x 265 mm x 510 mm	430x250x360 mm	430x250x360 mm	20.9 x 24.3 x 42.0 cm
Scanner Weight (pounds/kg)	14 kg, nominal (includes integrated battery)	18.8 kg with carry handle	12kg	12kg	9.7kg
Is scanner recommended for mounting on standard survey tripod? If no, what is recommended stand?	Yes.	Yes	Yes	Yes	Yes
AC Power Requirements (volts/watts)	90 - 260V AC	100 - 240V; < 80W avg.	N/A (battery integral)	N/A (battery integral)	100-240VAC for battery charger
DC Power Requirements (volts/watts)	24V DC	36V; < 80W avg.	24V,1.6W (battery integral)	24V,1.6W (battery integral)	12VDC
Batteries	On-board: Li-ion, External (optional): lead acid	2 lead acid with System	24V 3800 mAh NiMh rechargeable	24V 3800 mAh NiMh rechargeable	7Ah 12VDC
Battery Dimensions (LxWxH) (inches/cm)	External: 9.5? x 10? x 12?; 240mm x 260 mm x 300mm	236 mm x 165 mm x 215 mm	Included in scanner dimensions (battery is integral)	Included in scanner dimensions (battery is integral)	18 x 13 x 8 cm
Battery Weight (pounds/kg)	Internal: 1kg External: 16 kg,	12 kg	2kg	2kg	3.2kg
Battery Life (hours)	Internal: 1.5 hours External (optional): 4 hours	> 3 hrs	3	3	3hours for continuous fast scan
Are batteries hot-swappable? (Y/N)	No	Yes	No	No	No
Computer Requirements for Control (handheld option?)	1.4GHZ Pentium M or similar, 512MB SDRAM, Ethernet Card, SXGA+, Windows XP (Pro or Home Edition), Windows 2000; Handheld Tablet PC option; handheld PDA option	[10]	Hand held supplied	Hand held supplied	Optional ruggedised PC
Computer Requirements for Data Processing	2.0 GHz Pentium 4, 512 MB SDRAM, ethernet card, SXGA+, Win XP (Pro or Home Edition), Win 2000	[11]	PC or laptop (I-Site Studio? software supplied)	PC or laptop (I-Site Studio? Software supplied)	

Table 3. 2008 LiDAR Hardware Summary Sets 6 to 10 (Point of Beginning website).- continued –

Manufacturer	Leica Geosystems	Leica Geosystems	Maptek I-Site 3D	Maptek I-Site 3D	Measurement
Product	UDSKAAA	Loico SconStation 2	Laser Intaging	Laser Intaging	OuerrymenBro /
TTOULL	111)30000	Leita Stanstauon 2	Laser Scanner	Laser Scanner	Laser Ace Scanner
Standard Accessories (list)	Scanner &	[12]	Transport case, 2	Transport case, 2	Tribrach, 3x memory
	accessories carrying		Batteries, 110 VAC	Batteries, 110 VAC	cards, card reader,
	case; additional		charger, Car charger,	charger, Car charger,	battery, battery
	internal battery;		Tripod, Laser tribrach,	Tripod, Laser tribrach,	charger
	battery cradle for		Hand held computer,	Hand held computer,	
	internal battery;		Remote control,	Remote control,	
	battery charger/AC		Manual	Manual	
	power supply;				
	Cyclone-SCAN				
	software; cleaning kit				
Optional Accessories (list)	Notebook PC, tablet	[13]	Underground	Underground	Tripod, traverse kit
	PC, PDA; scan		photographic light,	photographic light,	
	targets; service		Cold weather jacket,	Cold weather jacket,	
	agreement; extended		Extreme environment	Extreme environment	
	warranty; tribrach		and/or long life	and/or long life	
	(Leica Professional		battery, Horizontal	battery, Horizontal	
	Series); tripod (Leica		mount system, Low	mount system, Low	
	professional series);		profile case.	profile case.	
	external battery				
Warranty	1 Year	1 year	12 months	12 months	12 m onth

Table 3. 2008 LiDAR Hardware Summary Sets 6 to 10 (Point of Beginning website).- continued –

Manu factur er	Measurement Devices Ltd	Optech Incorporated	Optech Incorporated	Riegl	Riegl
Product	C-ALS Cavity Scanner	ILRIS-3D	ILRIS-3D-ER	LMS-Z210ii	LMS-Z390
Performance					
Laser Wavelength (in nm)	905nm	1550	1550	Near infared	Near infared
Laser Power (in W, mW)		<10 mW	<20 mW	1mW	1mW
FDA Laser Classification (Class)	1	Class 1	Class 1M	1	1
Beam Diameter at Specified Distance from the Scanner (0.Y ft at X ft/Ymm at X m)	18mm at exit, 140mm at 50m	29 mm @ 100 m	29 mm @ 100 m	50 mm at 50 m	25 mm at 100 m
Measurement Technique	Time of flight	Time of Flight	Time of Flight	LIDAR	LIDAR
Average Data Acquisition Rate (pps)	200pps	2500	2500	8000	8000
Maximum Data Acquisition Rate (pps)	200pps	UP To 10 kHz	UP To 10 kHz	12000	12000
Distance Accuracy at Specified Distance (0.Y ft at X ft/Ymm at X m)		7 mm @ 100 m See Note 1	7 mm @ 100 m See Note 1	15 mm at 400 m	2 mm at 50 m
Position Accuracy at Specified Distance (0.Y ft at X ft/Ymm at X m)		8 mm @ 100 m See Note 1	8 mm @ 100 m See Note 1	10 mm at 100 m	10 mm at 100 m
Angular Accuracy (degrees-min-sec)	0.2degrees	.00115° (20 microradians)	.00115° (20 microradians)	0.005	0.0005
Minimum Range (feet/m)	0.5m	3 m	3 m	4 m	1 m
Maximum Range (feet/m) at Specified Reflectivity (specify 4%, 10%, 30% or 80% targets)	150m at 90%, 70m at 18%	1500 m @ 80%	2100 m @ 80%	650 m	300 m
Field of View (vertical angle) (degrees-min- sec)	-90 to +90degrees	180°	180°	80	80
Field of View (horizontal angle) (degrees- min-sec)	0 to 360 degrees	360°	360°	360	360
Minimum Vertical Scan Increment (degrees- min-sec)	0.1degrees	.00115° (20 microradians)	.00115° (20 microradians)	0.005	0.001
Minimum Horizontal Scan Increment (degrees-min-sec)	0.1degrees	.00115° (20 microradians)	.00115° (20 microradians)	0.005	0.002
Surface Reflectivity Range (%)	1-100%	.1-99%	.1- 99%	5-100%	5-100%
Onboard camera for aiming or for creating photomosaic, etc. (single image pixel resolution)	Yes with Red LED illumination	Yes (built-in camera)	Yes (built-in camera)	10 megapixel	10 megapixel
Is hardware interoperable with optical total stations and GPS? If yes, how?	Yes, via software	Yes, Post-Processing Software	Yes, Post-Processing Software	Yes	Yes
Is the scanner better for scanning topography or for as-built surveys?	Topography	Both	Both	Topography	As-Built
Is software technology for processing data from scanner manufacturer?	Yes, ModelAce and VoidWorks	Yes	Yes	Yes	Yes
Can scanner be set up over a known point? (E.g., height of instrument, backsight point, etc.) If yes, can station information be entered?	roll sensors plus optional compass for position	Yes / Yes	Yes / Yes	Yes	Yes
Can the user specify the field of view and scan density?	Yes	Yes	Yes	Yes	Yes
Maximum sample density (mm/ft)		2 mm @ 100 m	2 mm @ 100 m	3.5 mm @ 50 m	3.5 mm @ 50 m
Does the scanner support scan filters (e.g., range, intensity, area of interest)?	Rectangle, last hit	Yes	Yes	Yes	Yes
Does the scanner have interchangable parts that allow for upgrades (e.g., the camera, other modular components, etc.)	Yes, optional internal compass	Yes	Yes	Yes	Yes
Communication Method (e.g., ethernet card, firewire, wireless)	Serial, TCP/IP, WiFi	Ethernet / Wireless	Ethernet / Wireless	TCP/IP	TCP/IP
Does the scanner operate when out of level? Does it have compensators?	Yes, integral pitch and roll sensors	Yes / Yes	Yes / Yes	Yes	Yes
Resolution and range of compensators		See Note 2	See Note 2	Yes	Yes
Environmental					
Storage Temperature Range (degrees F/C)	-20 to +70C	-20 to 50° C	-20 to 50° C	-20 to 60	-20 to 60
Operating Temperature Range (degrees F/C)	-10 to +45C	0 to 40° C	0 to 40° C	-10 to 50	-10 to 50
Humidity (%)	IP66	Sealed 100%	Sealed 100%	100%	100%
Ambient Light	Any light conditions	Yes (not affected)	Yes (not affected)	Not Affected	Not affected
General					
Scanner Dimensions (LxWxH) (inches/cm)	200.0 x 5.0 Diameter	32 x 32 x 22 cm	32 x 32 x 22 cm	44x21	49 x 21
Scanner Weight (pounds/kg)	9.4kg including extension piece	13 kg	13 kg	13kg	13 kg

Table 4. 2008 LiDAR Hardware Summary Sets 11 to 15 (Point of Beginning website).

Manufacturer	Measurement Devices Ltd	Optech Incorporated	Optech Incorporated	Riegl	Riegl
Product	C-ALS Cavity Scanner	ILRIS-3D	ILRIS-3D-ER	LMS-Z210ii	LMS-Z390
Is scanner recommended for mounting on standard survey tripod? If no, what is recommended stand?	No. Cable or rod deployment in up, down or horizontal borehole.	Yes	Yes	Tripod or Vehicle	Tripod or Vehicle
AC Power Requirements (volts/watts)	85-264VAC	90-260 VAC/3.2 VA	90-260 VAC/3.2 VA	No	No
DC Power Requirements (volts/watts)	10-15VDC	24 VDC/75 Watts	24 VDC/75 Watts	12-28 VDC	12-28 VDC
Batteries	12V	24 VDC Nominal	24 VDC Nominal	Marine Battery	Marine Battery
Battery Dimensions (LxWxH) (inches/cm)		9 x 13 x 5 cm	9 x 13 x 5 cm	9 x 13 x 5 cm 12 x 11 x 8	
Battery Weight (pounds/kg)		1 kg	1 kg	19	19
Battery Life (hours)		4 batteries = 5 hours	4 batteries = 5 hours	14	14
Are batteries hot-swappable? (Y/N)	No	Yes	Yes	No	No
Computer Requirements for Control (handheld option?)	Ruggedised PC	Pocket PC or Laptop	Pocket PC or Laptop	1024 MB RAM	1024 MB RAM
Computer Requirements for Data Processing		1024 MB Ram	1024 MB Ram	1024 MB RAM	2000 MB RAM
Standard Accessories (list)	50m cable, 50m rods, surface control box, transit cases, ModelAce software	Carry Case / AC Power Supply	Carry Case / AC Power Supply	Inclination Sensor	Inclination Sensor
Optional Accessories (list)	Internal 3 axis magnetometer and accelerometer	Batteries/Charger, PC, Camera Kit	Batteries/Charger, PC, Camera Kit	Internal Sync Timer for GPS/INS	Internal Sync Timer for GPS/INS
Warranty	12month	1 year	1 year	12 months	12 months

Table 4. 2008 LiDAR Hardware Summary Sets 11 to 15 (*Point of Beginning* website).- continued –

Manufacturer	Riegl	Riegl USA, Inc	Riegl USA, Inc	Riegl USA, Inc.	Spatial Integrated Systems Inc
Product	LMS-Z420i	LMS-Z210ii	LMS-Z390i	LMS-Z420i	3 DIS - 3 Dimensional Imaging & Scanning
Performance					
Laser Wavelength (in nm)	Near infared	Near infrared	Near Infrared	Near Infrared	780NM
Laser Power (in W, mW)	1mW	1mW	1mW	1mW	20 mW
FDA Laser Classification (Class)	1	Class 1 Eyesafe Invisible Beam	Class 1 Eyesafe Invisible Beam	Class 1 Eyesafe Invisible Beam	II B
Beam Diameter at Specified Distance from the Scanner (0.Y ft at X ft/Ymm at X m)	25 mm at 100 m	50 mm at 50 m	10 mm at 50 m	10 mm at 50 m	0.4 Inches @ 54 Ft
Measurement Technique	LIDAR	Lidar	LIDAR	Lidar	Modulated Beam TOF
Average Data Acquisition Rate (pps)	8000	8000pps	8000 pps	8000 pps	3300
Maximum Data Acquisition Rate (pps)	12000	10000pps	11000 pps	11000 pps	3300
Distance Accuracy at Specified Distance (0.Y ft at X ft/Ymm at X m)	5 mm at 1000 m	15 mm at 400 m	2 mm at 50 m	5 mm at 50 m	0.2 Inches @ 54 Feet
Position Accuracy at Specified Distance (0.Y ft at X ft/Ymm at X m)	6 mm at 100 m	10 mm at 100 m	10 mm at 100 m	6 mm at 100 m	0.2 Inches @ 54 Feet
Angular Accuracy (degrees-min-sec)	0.0005	0.005	0.0005	0.0005	(55) Using Standard & Customized Catalogs
Minimum Range (feet/m)	2 m	4 m	1 m	2m	1'
Maximum Range (feet/m) at Specified Reflectivity (specify 4%, 10%, 30% or 80% targets)	1000m	650 m	400 m	1000 m	54 '
Field of View (vertical angle) (degrees-min- sec)	80	0-80	0 - 80	0-80	320 Degrees
Field of View (horizontal angle) (degrees- min-sec)	360	0-360	0 - 360	0-360	360 Degrees
Minimum Vertical Scan Increment (degrees- min-sec)	0.002	0.005	.001	0.002	0.03 Degrees
Minimum Horizontal Scan Increment (degrees-min-sec)	0.002	0.005	.001	0.002	0.05 Degrees
Surface Reflectivity Range (%)	5-100%	5-100%	5-100%	5-100%	85%
Onboard camera for aiming or for creating photomosaic, etc. (single image pixel resolution)	10 megapixel	10 Megapixels	16.7 Megapixel	16.7 Megapixels	Yes - 2 Megapixels
Is hardware interoperable with optical total stations and GPS? If yes, how?	Yes	Yes	Yes	Yes	No
Is the scanner better for scanning topography or for as-built surveys?	As-built & Topography	Topography	As Built	As built & Topography	As-Built
Is software technology for processing data from scanner manufacturer?	Yes	Yes	Yes	Yes	Yes
Can scanner be set up over a known point? (E.g., height of instrument, backsight point, etc.) If yes, can station information be entered?	Yes	Yes	Yes	Yes	No
Can the user specify the field of view and scan density?	Yes	Yes	Yes	Yes	Yes
Maximum sample density (mm/ft)	3.5 mm @ 50 m	3.5 mm at 50 m	3.5 mm at 50m	3.5 mm at 50 m	14.36MM @ 16.46M
Does the scanner support scan filters (e.g., range, intensity, area of interest)?	Yes	Yes	Yes	Yes	No
Does the scanner have interchangable parts that allow for upgrades (e.g., the camera, other modular components, etc.)	Yes	Yes	Yes	Yes	No - All Included
Communication Method (e.g., ethemet card, firewire, wireless)	TCP/IP	TCP/IP	TCP/IP	TCP/IP	Ethernet
Does the scanner operate when out of level? Does it have compensators?	Yes	Yes	Yes	Yes	Yes - Compensators Not Necssary
Resolution and range of compensators	Yes	Yes	Yes	Yes	N/A
Environmental	- 10 -				
Storage Temperature Range (degrees F/C)	-20 to 60	-20c to 60c	-10c to 50c	-10c to 50c	32 - 104 Degrees F
Operating Temperature Range (degrees F/C)	-10 to 50	-10c to 50c	0c to 40c	0c to 40c	32 - 104 Degrees F
Humidity (%)	100%	100%	100%	100%	Non Condensing

Table 5. 2008 LiDAR Hardware Summary Sets 16 to 20 (Point of Beginning website).

Manufacturer	Riegl	Riegl USA, Inc	Riegl USA, Inc	Riegl USA, Inc.	Spatial Integrated Systems Inc
Product	LMS-Z420i	LMS-Z210ii	LMS-Z390i	LMS-Z 420i	3 DIS - 3 Dimensional Imaging & Scanning
Ambient Light	Not Affected				
General					
Scanner Dimensions (LxWxH) (inches/cm)	47 x 21	44 x 21	49 x 21	47 x 21	10
Scanner Weight (pounds/kg)	15 kg	13 kg	15kg	16 kg	22 Lbs - 10 Kg
Is scanner recommended for mounting on standard survey tripod? If no, what is recommended stand?	Tripod or Vehicle	Tripod or Vehicle	Tripod or Vehicle	Tripod or Vehicle	Yes
AC Power Requirements (volts/watts)	No	Yes	Yes	Yes	100-240V (50-70W)
DC Power Requirements (volts/watts)	12-28 VDC	12-28v DC	12-28v DC	12-28v DC	12V (50-70W)
Batteries	Marine Battery	NiMH	NiMH	NiMH	N/A
Battery Dimensions (LxWxH) (inches/cm)	12 x 11 x 8	14 x 4 x 4	14 x 4 x 4	14 x 4 x 4	N/a
Battery Weight (pounds/kg)	19	8 lbs	8 lbs	8 lbs	N/A
Battery Life (hours)	14	14 hours	14 hours	14 hours	N/A
Are batteries hot-swappable? (Y/N)	No	No	No	No	N/A
Computer Requirements for Control (handheld option?)	1024 MB RAM	1024 Mb Ram	1024 Mb Ram	1024 Mb Ram	Note (57)
Computer Requirements for Data Processing	2000 MB RAM	1024 Mb Ram	2000 Mb Ram	2000 Mb Ram	Note (57)
Standard Accessories (list)	Inclination Sensor	Inclination Sensor	Inclination Sensor	Inclination Sensor	Travel Case, Tripod & Computer
Optional Accessories (list)	Internal Sync Timer for GPS/INS	N/A			
Warranty	12 months				

Table 5. 2008 LiDAR Hardware Summary Sets 11 to 15 (*Point of Beginning* website).- continued –

Manufacturer	Topcon	Trimble	Trimble	Z+F	Z+F/Z+FUK
Product	GLS-1000	Trimble GX 3D	Trimble VX Spatial	IMAGER 5006	IMAGER 5006
		Scanner	Station		
Performance					
Laser Wavelength (in nm)	1535nm	532 nm	870 nm		Visible
Laser Power (in W, mW)	less than 25W	<1 mW	< 1 mW	29mW	See classification
FDA Laser Classification (Class)	1	Class 2	Distance meter class 1. Laser pointer class 2	3R	3R (ISO EN 60825- 1)
Beam Diameter at Specified Distance from the Scanner (0.Y ft at X ft/Ymm at X m)	6mm @1-40m, 16mm @ 100m	3mm@50m (fixed focus); 0.3mm@5m; 0.9mm@15m; 1.5mm@25m (with autofocus)	Horizontal 4 cm/100 m (0.13 ft/328 ft). Vertical 8 cm/100 m (0.26 ft/328 ft)	0.14 at 3.3 (3.5mm at 1m)	3 mm at 1m
Measurement Technique	Time of Flight	Time of flight	Time of flight	Phase shift AMCW	phase based
Average Data Acquisition Rate (pps)		Depends on application	5 (1)	125,000	< 250 000 px1/sec.
Maximum Data Acquisition Rate (pps)	3000	Up to 5000 pps	15	500,000	< 500 000 pxl/sec.
Distance Accuracy at Specified Distance (0.Y ft at X ft/Ymm at X m)	4mm @ 150m	7mm@100m (Uc); 2.5mm@100m (Std Dev)	3 mm @ ;Ü150 m (0.011 ft @ ;Ü492 ft)	+/- 1mm at 50m	1mm at 25 m rms 100% white reflectivity
Position Accuracy at Specified Distance (0.Y ft at X ft/Ymm at X m)		12mm@100m (Uc)	10 mm @ ;Ü150 m (0.032 ft @ ;Ü492 ft)	9mm at 50m	See Angular Accuracy
Angular Accuracy (degrees-min-sec)	6	Vt - 70µrad/14.5? (Uc); 17µrad/3.5? (Std Dev): Hz - 60µrad/12.4? (Uc); 30µrad/6.2? (Std Dev)	1 second	0.007°	0.007 degrees rms
Minimum Range (feet/m)	2m	2 m	2 m (6.56 ft)	0.3m	1.0 m
Maximum Range (feet/m) at Specified Reflectivity (specify 4%, 10%, 30% or 80% targets)	330m @ 90% reflectivity	200 m at 75% of points on 20% grey target ; up to 350 m with Overscan	Reflectorless >300 m (984 ft) to 18% reflective surface and >800+ m (2625 ft) to 90% reflective surface. Prism: 5500 m (18044 ft) (1)	79m	79 m
Field of View (vertical angle) (degrees-min- sec)	70 degrees	60 °	270 degrees	310°	310 degrees
Field of View (horizontal angle) (degrees- min-sec)	360 degrees	360 °	360 degrees	360°	360 degrees
Minimum Vertical Scan Increment (degrees- min-sec)		17 μrad (4.5?)	Minimum point spacing 10 mm (0.032 ft)	0.0018°	0.0018 degrees
Minimum Horizontal Scan Increment (degrees-min-sec)		27 μrad (5.5?)	Minimum point spacing 10 mm (0.032 ft)	0.0018°	0.0018 degrees
Surface Reflectivity Range (%)		1-99%	1-99% (1)	5-99%	upto 100%
Onboard camera for aiming or for creating photomosaic, etc. (single image pixel resolution)	2.0 MP	Yes	Yes, (2048 x 1536 pixels)	yes, optional	Yes
Is hardware interoperable with optical total stations and GPS? If yes, how?	Yes, optical tribrach and coordinate based	Yes, Through Trimble Connected Site	Yes, Through the Trimble Connected Site	yes, via custom survey targets	Yes, with software
Is the scanner better for scanning topography or for as-built surveys?	Good for both	Optimized for both	Optimized for both	both (within given max. range)	As-Built Surveys
Is software technology for processing data from scanner manufacturer?	Yes, Topcon ScanMaster	Yes, RealWorks Survey	Yes. RealWorks Survey	yes	Yes, LFM Software
Can scanner be set up over a known point? (E.g., height of instrument, backsight point, etc.) If yes, can station information be entered?	Yes, instrument panel input	Yes; yes (dual axis compensator, height of instrument and PPM corrections)	Yes. Supports all survey workflows	yes	Not standard work pratice
Can the user specify the field of view and scan density?	Yes	Yes	Yes	yes	Yes
Maximum sample density (mm/ft)	1mm @ 100m	140 points/sq.inch @ 100 m	Minimum point spacing 10 mm (0.032 ft)	100,000 p per 360°	See Angular resolution

Table 6. 2008 LiDAR Hardware Summary Sets 21 to 25 (Point of Beginning website).

Manufacturer	Topcon	Trimble	Trimble	Z+F	Z+F / Z+F UK
Product	GLS-1000	Trimble GX 3D	Trimble VX Snatial	IMAGER 5006	IMAGER 5006
		Scanner	Station	mirobicoou	Lintobletovv
Does the scanner support scan filters (e o		Vec range intensity	Junion		
range, intensity, area of interest)?	No	area of interest	Yes	yes	Yes
Does the scanner have interchangable parts		Yes ; all included but			
that allow for upgrades (e.g., the camera,	Tilting tribrach	Trimble GX includes a	No hardware		
other modular components, etc.)	assembly	standard 5/8 11 hole	upgrades. Software is	yes	Yes
· · · · · · · · · · · · · · · · · · ·	ussentory	for accessories	upgradable.		
Communication Method (e.g., ethernet card		101 0000000000	USB 2.4 GHz radio		
firewire wireless)	Built-in WLAN	Ethernet or Wireless	and Bluetooth to the	ethernet, USB,	ethemet bluetooth
	(802.11g)	Enternet of Whereas	Controller	bluetooth	emerner, blactooth
Does the scanner operate when out of level?	Ves compensated	Ves/Ves(dual axis	Yes Yes (dual-axis		Yes Compensators
Does it have compensators?	On/Off	compensator)	compensator)	yes; tilt sensor	can be overridden.
Resolution and range of compensators		• /	Accuracy 0.5		
	1 second incremented	Range: 6 min	seconds. Range 6	resolution: 1/1,000°;	1/1000 degrees
	to 6 minute max	8	minutes	range: 2°	
Environmental					
Storage Temperature Range (degrees F/C)	100		Contact Trimble for		
	-10C - +60C	-20° to 50° C	more information	-20°C - 50°C	-20C - +50C
Operating Temperature Range (degrees F/C)					
	0C - +40C	0° to 40° C	C20 jãC to +50 jãC	0°C - 40°C	0C - +40 C
			(°C4 ;äF to +122 ;äF)		
Humidity (%)			IP55. Contact		
/	IP-52	Non-condensing	Trimble for more	non-condensing	non-condensing
			information	0	
Ambient Light			Any light conditions	all conditions from	all conditions from
		Any light conditions	(1)	darkness to daylight	darkness to daylight
General					
Scanner Dimensions (LxWxH) (inches/cm)	240mm x 240mm x	323 mm x 343 mm x	352 x 209 x 196 mm	286mm x 190mm x	286 X 190 X 732
	566mm	404 mm	(1.16 x 0.69 x 0.64 ft)	372mm (w x d x h)	mm
Scanner Weight (pounds/kg)	16kg	13.6 kg	5.25 kg (11.57 lb)	14kg	14kgs
Is scanner recommended for mounting on	Géneral and end to de ser al				37
standard survey tripod? If no, what is	Standard inbrach and	Yes	Yes	yes	res. Alternatives
recommended stand?	unpou				aiso available
AC Power Requirements (volts/watts)	100-240V m/ Adoptor	00 240 V 50 60 Hz	100 240 V 50 60 Hz	90 - 260V AC	00 260 Volta
	100-240 V W/Adapter	90-240 V, 50-60 Hz	100-240 V, 50-60 HZ	(power supply)	90-200 Volts
DC Power Requirements (volts/watts)	7.4VDC	24 V nominal	12 V nominal	24V DC (scanner)	24 Volts
Batteries			Yes, one internal	Sealed lead acid	Supplied with 2 off
	(4) on-board	Yes	and/or three external	battery + Licium Ion	internal batteries
	(via battery holder)		(via battery holder)		internar barteries
Battery Dimensions (LxWxH) (inches/cm)		80 mm x 80 mm x	126 x 74 x 24 mm	acid battery: 32 x 24	
		230 mm	$(0.41 \ge 0.24 \ge 0.08 \text{ ft})$	x 26cm; Li-Ion:	?
		200	(011111012111010011)	integrated in scanner	
Battery Weight (pounds/kg)				acid battery: 15kg; Li	
	.4 lbs	3.1 kg	0.35 kg (0.77 lb)	Ion: integrated in	?
				scanner	
Battery Life (hours)		3.5 hours (Average,	One battery approx.		2 Hours, External
	4 hours	depending on	5 hours three batteries	acid battery: 4h; Li-	hattery also available 4
	, nour s	environmental	approx. 15 hours	Ion: 1,5h	hours
		conditions)	oppromine means		
Are batteries hot-swappable? (Y/N)			Yes, when using		
	Yes	No	external 3-battery	yes	No
		T 1 70	holder		
Computer Requirements for Control		Laptop PC or	Trimble TSC2 or	1.2GHz, 512MB	Internal harddisk or
(nanoneld option?)	PC optional	Trimble TSC2	Trimble CU	RAM (Win 2000, XP)	PDA or Laptop.
Community Description		nancheid controllers	Controllers		
Computer Requirements for Data Processing	2Ghz CPU 1GB	Ask Irimble dealer,	Windows PC.	1024 እጦ ኮላእና	Loctor
	RAM	depends on	Contact Trimble for	1024 IVIB KAIVI	гартор
		application	more information		

Table 6. 2008 LiDAR Hardware Summary Sets 21 to 25 (*Point of Beginning* website).- continued –

Manufacturer	Topcon	Trimble	Trimble	Z+F	Z+F/Z+FUK
Product	GLS-1000	Trimble GX 3D	Trimble VX Spatial	IMAGER 5006	IMAGER 5006
		Scanner	Station		
Standard Accessories (list)	Case, cover,	Transportation case; compact power supply with AC cables; Trimble tribach; ethemet cable for connection of scanner to data collector; 50 adhesive flat targets; Trimble 3D Scanner Field software	Large range of accessories. Contact Trimble for more information	power supply, exchangable battery, charger	Carry cases, power supply, batteries, ethemet cable
Optional Accessories (list)	Tilting tribrach mount	Trimble TSC2 controller with PocketScape field software; Trimble 3D scanner backpack; car battery cable kit; target kits (planar, circular, traverse kit); batteries	Large range of accessories. Contact Trimble for more information	camera, dolly, tripod, laptop tray for tripod	tripod, external batteries
Warranty	12 months	1 year - extendable	Two years standard. Extendable.	Limited 1 year	12 Months. Extented warranty available

Table 6. 2008 LiDAR Hardware Summary Sets 21 to 25 (*Point of Beginning* website).- continued –

Manufacturer	Zoller + Frohlich
Product	IMAGER 5006
Performance	
Laser Wavelength (in nm)	650 nm
Laser Power (in W, mW)	19 / 29 mW
FDA Laser Classification (Class)	3 R
beam Diameter at Specified Distance from the Scanner (0 V ft at Y ft/Vmm at Y m)	3 mm in 1m distance
Messurement Technique	nhace chiff
Average Data Acquisition Bate (nps)	250.000 nns
Maximum Data Acquisition Rate (pps)	500.000 pps
Distance Accuracy at Specified Distance	Linearity error up to
(0.Y ft at X ft/Ymm at X m)	$50 \mathrm{m} < 1 \mathrm{mm}$
Position Accuracy at Specified Distance (0.Y	
ft at X ft/Ymm at X m)	
Angular Accuracy (degrees-min-sec)	0.007°
Minimum Range (feet/m)	1.0 m
Maximum Range (feet/m) at Specified	Ambiguity interval 79
Reflectivity (specify 4%, 10%, 30% or 80%	m
Field of View (vertical angle) (decreased in the	
sec)	310 °
Field of View (horizontal angle) (degrees-	
min-sec)	360 °
Minimum Vertical Scan Increment (degrees-	0.00100
min-sec)	0.0018°
Minimum Horizontal Scan Increment	0.00189
(degrees-min-sec)	0.0018
Surface Reflectivity Range (%)	0 - 100 %
Onboard camera for aiming or for creating	no, external camera
photomosaic, etc. (single image pixel	optional
resolution)	-
stations and GPS2 If yes how?	GPS, RS232, NMEA
Is the scanner better for scanning tonography	
or for as-built surveys?	as-built
Is software technology for processing data	
from scanner manufacturer?	yes
Can scanner be set up over a known point?	mounted prices con be
(E.g., height of instrument, backsight point,	surveyed for the
etc.) If yes, can station information be	scannerposition
entered?	
Can the user specify the field of view and	yes
scan density?	1.57mm @ 10 m
Does the scanner support scan filters (e.g.	1.37 mm (a) 10 m
range, intensity, area of interest)?	yes, in postprocessing
Does the scanner have interchangable parts	
that allow for upgrades (e.g., the camera,	yes, camera
other modular components, etc.)	-
Communication Method (e.g., ethernet card,	ethernet, wireless,
firewire, wireless)	USB
Does the scanner operate when out of level?	yes, tilt sensor
Does it have compensators?	
Resolution and range of compensators	+/- 2 ° / 0.001°
Fnvironmental	resolution
Storage Temperature Range (degrees F/C)	- 20° C - 50°C
Operating Temperature Range (degrees F/C)	-20 0-30 0
-priming reinpermane runge (degrees 170)	0°C - 40°C
Humidity (%)	non-condensing
Ambient Light	from darkness to
	daylight
General	
Scanner Dimensions (LxWxH) (inches/cm)	28.6 cm x 19.0 cm x
	37.2 cm
Scanner Weight (pounds/kg)	13.8 kg

Table 7.	2008 LiDAR H	Iardware Summa	ry Set 26	(Point of	f Beginning	website).

Manufacturer	Zoller + Frohlich
Product	IMAGER 5006
Is scanner recommended for mounting on	
standard survey tripod? If no, what is	ves
recommended stand?	,
AC Power Requirements (volts/watts)	
DC Power Requirements (volts/watts)	
Batteries	changeable (intern)/
	external
Battery Dimensions (LxWxH) (inches/cm)	19.0 cm x 8.8 cm x
	5.5 cm / 26.0 cm x
	24.0 cm x 30.0 cm
Battery Weight (pounds/kg)	1.5 kg / 16 kg
Battery Life (hours)	2.5 h / 6 h
Are batteries hot-swappable? (Y/N)	ves
Computer Requirements for Control	no computer (internal
(handheld option?)	PC)
Computer Requirements for Data Processing	Windows 2000, XP:
	Pentium III min 1
	GHz recommended
	Pentium IV 1.8GHz;
	512 MB RAM or
	more; 3D Graphic
	card (OpenGL
	support)
Standard Accessories (list)	Li-Ion hattery pack
	Power supply KNL-
	24; Power cable; Li-
	Ion charging cradle;
	Power supply cable;
	Ethernet cable;
	Software Z+F
	LaserControl
	?Advanced?;
	Transport box
	IMAGER 5006;
	Transport box acces
Optional Accessories (list)	Transportable
	rechargeable battery
	pack Power Pack
	TRAPP-15-24;
	Charging cable; Cross-
	Ethernet cable;
	Laptop/PDA; Tripod;
	Tribrach; Dolly;
	Mounting for Laptop;
	Targets; Transport box
	for tripod
Warranty	12 m onth

Table 7. 2008 LiDAR Hardware Summary Set 26 (Point of Beginning website).- continued -

Survey N	otes		
1	Leica Geosystems	Leica ScanStation 2	[1] There are two common methods of reporting spot size. The 'Gaussian' diameter is: 6 mm at 50 m; 4 mm at 25 m; and 6 mm at < 1 m; the TWHM' method of reporting spot size results in values of 3 mm at 50 m; 2 mm at 25 m; 3 mm at < 1 m. [2] Maximum instantaneous data acquisition rate. [3] Accuracy for a single pulsed range measurement (not averaged). [4] Accuracy of a single pulsed position measurement; 2.0 mm target center point accuracy (based on averaging technique) [5] 1 megapixel for 24x24 degree; 64 megapixels rectified for full scan; can also be used with external camera. [6] Via Leica's X-Function, LandXML and ASCII. [7] Instrument height, backsight, traversing, resectioning and stakeout fully supported. [8] Fully integrated for highest system accuracy and minimized calibration frequency. Upgradeability is dependent on specific feature(s). [9] On/off dual axis compensator [10] 1.4 GHz Pentium M or similar, 512 MB SDRAM, ethernet card, SXGA+, Win XP (Pro or Home Edition), Win 2000; handheld tablet PC option. [11] 2.0 GHz Pentium 4, 512 MB SDRAM, ethernet card, SXGA+, Win XP (Pro or Home Edition), Win 2000; handheld tablet PC option. [11] 2.0 GHz Pentium 4, 512 MB SDRAM, ethernet card, SXGA+, Win XP (Pro or Home Edition), Win 2000; handheld tablet PC option. [11] 2.0 GHz Pentium 4, 512 MB SDRAM, ethernet card, SXGA+, Win XP (Pro or Home Edition), Win 2000; handheld tablet PC option. [11] 2.0 GHz Pentium 4, 512 MB SDRAM, ethernet card, SXGA+, Win XP (Pro or Home Edition), Win 2000; handheld tablet PC option. [11] 2.0 GHz Pentium 4, 512 MB SDRAM, ethernet card, SXGA+, Win XP (Pro or Home Edition), Win 2000; handheld tablet PC option. [11] 2.0 GHz Pentium 4, 512 MB SDRAM, ethernet card, SXGA+, Win XP (Pro or Home Edition), Win 2000 [12] Instrument shipping case, tibrach (Leica Professional Series), tripd, ethernet cable, two power supplies, cables, power supply charger, cleaning kit, Cyclone-SCAN software. [13] HDS scan targets and target accessories, customer care package (CCP), extended waranty, tablet P
2	Maptek I-Site 3D Laser Imaging	I-Site 4400LR Laser Scanner	(1) As measured on factory test range. (2) Set-up over known point using laser plummet, backsight with integral telescope and level via compensation is standard procedure. Total station measurement on same set-up may be made before or after if required. Alternatively, a GPS receiver can be fitted directly to the seanner via a standard 5/8" UNC thread, with automatic offsets to the center of the seanner made for GPS readings. Coordinates can be transferred in the field or back at the office in desktop software. (3) Extreme environment battery required.
3	Maptek I-Site 3D Laser Imaging	I-Site 4400CR Laser Seanner	(1) As measured on factory test range. (2) Set-up over known point using laser plummet, backsight with integral telescope and level via compensation is standard procedure. Total station measurement on same set-up may be made before or after if required. Alternatively, a GPS receiver can be fitted directly to the seanner via a standard 5/8" UNC thread, with automatic offsets to the center of the scanner made for GPS readings. Coordinates can be transferred in the field or back at the office in desktop software. (3) Extreme environment battery required.
4	Measurement Devices Ltd	QuarrymanPro / LaserAce Scanner	Ruggedised scanner designed for Stockpile surveys, Quarrying and face profiling. Simple onboard user interface.
5	Measurement Devices Ltd	C-ALS Cavity Scanner	Ruggedised seanner for borehole deployment to survey inaccesible natural or man-made voids either underground or surface.
6	Optech Incorporated	ILRIS-3D	Note 1: Accuracies are based on single shot measurements. No averaging of multiple shots is used to determine system performance. Note 2: Optional compensators for level, orientation, motion, direction, etc., are available, depending on the compensation required.
7	Optech Incorporated	ILRIS-3D-ER	Note 1: Accuracies are based on single shot measurements. No averaging of multiple shots is used to determine system performance. Note 2: Optional compensators for level, orientation, motion, direction, etc., are available, depending on the compensation required.
8	Trimble	Trimble VX Spatial Station	1. Performance depends on environmental conditions, range, surface texture, colour, angle etc.
9	Z+F / Z+F UK	IMAGER 5006	the worlds fastest, and most flexible Laser Seanner. ?the first real "stand alone" seanner without any cable connection. For further information please so to our website www.zf-uk.com

Table 8. 2008 LiDAR Hardware Summary Survey Notes (Point of Beginning website).

APPENDIX B - SPECIFICATIONS OF CURRENT LIDAR SOFTWARE

Manufacturer	3rdTech	InnovMetric Software Inc	kubit USA	Leica Geosystems	Leica Geosystems
Product	SceneVision-3D	PolyWorks V10	PointCloud 3.2 / PointCloud Pro 3.2	Leica Cyclone Family of Software [1]	Leica CloudWorx for AutoCAD (Basic and Pro versions)
Price (list by modules or components)	Included with DeltaSphere; contact 3rdTech for additional pricing information.	On demand	starts from \$1.000	[2]	[2]
Laser scanner brands and models from which data can be imported directly	DeltaSphere-3000IR, also Polhemus, Riegl	All brands	All (ASCII or PTC format)	All [3]	All [3]
Operating systems supported (if one is preferred, please state)	Windows XP/Vista	XP/2000/Vista	AutoCAD application (e.g. ADT, Civil. Map)	Win 200, XP 32 and 64 , Vista 32 and 64	Win 200, XP 32 and 64 , Vista 32 and 64
Minimum CPU requirement	Pentium 4	1 GH	Like AutoCAD	Pentium 4 2GHz	Pentium 4 2GHz
Minimum RAM required	512 MB (1GB recommended)	2 GB	Like AutoCAD (recommended 1 GB or more)	Pentium 4 2GHz	Pentium 4 2GHz
Space required on hard disk to properly run application, including swap space, etc. (list in Mb)	50 MB (512 MB swap)	2GB	Like AutoCAD	[8]	[8]
Other hardware requirements	3D graphics card	Nvidia Quadro FX graphic board	Like AutoCAD	[4]	[4]
Cloud Editing/Analysis					
Can features be defined with user-created code libraries?	Planes, contours, lines, points	Yes	Yes	Yes, Import codes from CAiCE, etc.	Yes [9]
Feature codes exportable to CAD software? (specify which software)	VRML models, lines	MicroStation/AutoC AD	N/A (already in CAD)	Yes, LandXML, ASCII	No, runs in CAD
Can user compare cloud or shapes fitted to clouds to plan or perform theoretical shape and interference checking? (State which, all or none.)	None	All	Clash Detection module (PointCloud Pro)	Yes, all	Yes [9]
Ability to make measurements such as distances, angles, areas, volumes, of lines, planes, shapes and other surfaces from cloud? (State which, all or none.)	Distances between points, lines, planes, perpendiculars; angles between lines and planes.	All	All	Yes, all	Yes [9]
Can user overlay or drape a photograph from an external source (e.g., digital camera) on cloud or elements extracted from cloud?	Yes, fully automatic	No	Yes	Yes, [5]	Yes, [10]
Ability to register scans without the use of targets?	Yes, fully automatic	Yes, using geometry	No (only post- processing software)	Yes [17]	NA
Ability to place several clouds from different scans in coordinated 3D space using total station or GPS survey data that has been used to determine positions of scanner and alignment of scans?	No	Yes	Yes	Yes	NA
Analyze points in a cloud representing shapes such as planes, cylinders and spheres to detect measurement outliers?	Planes only	Yes	Yes	Yes	Yes (Pro planes and cylinders)
Ability to integrate scans with floor plans, engineering drawings of objects and surveyed information? (State which, all or none.)	None	Engineering drawings and surveyed information.	Yes	Yes, all	Yes, all
Automate decimation of points in selectable areas to make data files as compact as possible?	Yes, FA	Yes	Yes	Yes	NA
Is fitting of lines, planes and shapes to cloud done manually or automatically, or both?	Automatic plane fitting. Also automatic intersection of planes to determine lines or contours.	Both	both (planes, pipes)	Both	Both

Table 9. 2008 LiDAR Software Summary Sets 1 to 5 (Point of Beginning website).

Manufacturer	3rd Tech	InnovMetric Software Inc	kubit USA	Leica Geosystems	Leica Geosystems
Product	SceneVision-3D	PolyWorks V10	PointCloud 3.2/ PointCloud Pro 3.2	Leica Cyclone Family of Software [1]	Leica CloudWorx for AutoCAD (Basic and Pro versions)
 For automatic and manual fitting, what techniques are used or available (e.g. least squares, taking average, etc.)? 	Least squares	Least squares, minimum circumscribed, maximum circumscribing, orientation- constrained, position constrained.	least square	Least squares; catalog	Least squares
Ability to automatically track lines or limits	No	Yes	No	Yes, segment by	No
Ability to automatically calculate and list alignment of center line of shapes (such as a pipe) containing straight and curved segments such as elbows?	No	Yes		Yes, calculate	Yes, straight (Pro)
Maximum number of points that can be loaded	100 m illion	100 million WinXP32 and 200 million WinXP64.	30 Million in one reference, multiple references are possible	N/A [13]	N/A [13]
Automatic removal of noise (e.g., cars on road, vegetation, etc.)?	No	Yes	No	Yes	Yes
Rendering/CAD Model					
Generation/Viewing					
generate or create CAD models or model segments from point clouds and other known information? (Specify level of automation and intelligence.)	Automatic VRML models from point clouds or color point clouds.	Automatic and Interactive methods	sem i-automatic	Yes, [6]	Yes, [11]
Are items (CAD models such as pipes, steel, flanges, elbow) fit to the point cloud using standard object tables/catalogs?	No	Using primitives	No	Yes	No
Create statistical quality assurance reports on the modeled objects?	No	No	Yes	Yes	Yes
Automatically compute, without user interaction, a full 3D polygonal mesh (not view-based) from a point cloud?	Yes, FA	Yes	No	Automatic	No
Perform contour generation?	No	Yes	No	Yes	No
Perform volume calculation capabilities?	No	Yes	No (is a AutoCAD feature)	Yes	No
Perform solid modeling (volume generation) based on user-defined lines, planes and other surfaces as bounds?	No	No	Yes	Yes, volumes	No
Perform profile and cross-section generation along any cutting plane, family of planes or road alignment?	Yes	Yes	Yes	Yes	No
Have edge detection technology to determine boundaries of solids, planes and other shapes?	No	Yes	No	Yes	No
Perform automatic extraction of standard shapes from cloud (e.g. pipe fittings, structural steel members, etc.)?	No	Pipe center-line	No	Yes	Yes {14]
Can user view cloud or generated shapes or models from any viewpoint in 3D?	Yes	Yes	Yes	Yes	Yes
Are fly-throughs or walk-throughs supported?	Yes	Yes (Video generation)	Yes (is a AutoCAD feature)	Yes	Yes
Have intelligent display of detail depending on scale of the view?	No	No	Yes	Yes	Yes
Can user select transparent/opaque surface for cloud and CAD shapes?	Yes	Yes	Like AutoCAD	Yes	No
Which export formats are supported?	RTPI,VRML, ASCI XYZ, OBJ	TXT, IGES,DXF,STL,OBJ, VRML.Microstation plug-ins	Like AutoCAD	11 Formats, [7]	As AutoCAD

Table 9. 2008 LiDAR Software Summary Sets 1 to 5 (*Point of Beginning* website).- continued -

Manufacturer	3rd Tech	InnovMetric Software Inc	kubit USA	Leica Geosystems	Leica Geosystems
Product	SceneVision-3D	PolyWorks V10	PointCloud 3.2/ PointCloud Pro 3.2	Leica Cyclone Family of Software [1]	Leica CloudWorx for AutoCAD (Basic and Pro versions)
Specify other measurement tools (e.g., clearance, cut/fill, table of elevation differences)	Perpendicular point to plane	Heights, lengths, angles, radii, volume.		All	None
Can the pointcloud be rendered with visualization effects (e.g., intensity mapping, elevation mapping, shading, silhouette)?	Yes; laser intensity, range, full color.	Yes	Like AutoCAD	Yes, all and more	No
Can the software automatically detect scan targets?	No	Yes	No	Yes, spherical & planar	N/A
Miscellaneous					
Provide high-speed thumbnail views of scans, clouds, photographic images and generated shapes?	No	No	No	No	No
Can client/server system support multiple users?	No	Yes	Yes	Yes	Yes
Is client/server system supported to enable several clients contributing to a single project?	No, but system includes multiple licenses.	No	Yes	Yes, simultaneously	Yes, simultaneously
Other Features					
Describe	Auto intersection of planes to determine lines or contours. Create full-color, texture-mapped, photo- realistic CG models. Produce panoramic images. Create high- res, photo close-ups in the model.	Grid cell manager to split huge data sets	Image extension: combined evaluation of point cloud and orientated images	[15]	[15]

Table 9. 2008 LiDAR Software Summary Sets 1 to 5 (*Point of Beginning* website).- continued -

Manufacturor	Loica Coosystoms	Loica Consystems	Loica Coosystems	Loica Geosystems	Loica Coogystoms
Draduat	Leica CloudWory	Laica CloudWory	Loica CloudWorx	Lates TruView	Leica Geosystems
TTOULL	for MicroStation	for PDMS	for Intergranh	FREE Web Viewer	TOPO
	for million		Sm artPlant Review	FILLE Web FICHER	1010
Price (list by modules or components)	[2]	[2]	[2]	Free	[2]
Laser scanner brands and models from which	["	[2]	[2]	1100	["
data can be imported directly	All [3]	All [3]	All [3]	All [3]	All [3]
Operating systems supported (if one is	Win 200, XP 32 and	Win XP 32 and 64,			
preferred, please state)	64, Vista 32 and 64	Vista 32 and 64			
Minimum CPU requirement	Pentium 4 2GHz	Pentium 4 2GHz	Pentium 4 2GHz	Pentium 4 2GHz	Pentium 4 2GHz
Minimum RAM required	Pentium 4 2GHz	Pentium 4 2GHz	Pentium 4 2GHz	Pentium 4 2GHz	Pentium 4 2GHz
Space required on hard disk to properly run	F0]	501	[0]	101	12
application, including swap space, etc. (list in Mb)	[8]	۲۵	[8]	12 mb	45 mb
Other hardware requirements	[4]	[4]	[4]	OpenGL Graphics	OpenGL Graphics
Cloud Editing/Analysis					
Can features be defined with user-created	Veg [0]	Veg [0]	NI/A	NT/ A	Vec
code libraries?	res[9]	res[7]	IN/A	IN/A	Ites
Feature codes exportable to CAD software? (specify which software)	No, runs in CAD	N/A	N/A	N/A	Yes
Can user compare cloud or shapes fitted to					
clouds to plan or perform theoretical shape		11	11		
and interference checking? (State which, all	Yes [9]	Yes, all	Yes, all	No	No
or none.)					
Ability to make measurements such as					
distances, angles, areas, volumes, of lines,	37 - [0]	37 - [0]	37 - [0]	37 1 ¹	X7 1 ¹
planes, shapes and other surfaces from	Yes[9]	Yes [9]	Yes [9]	Yes, linear only	Yes, linear only
cloud? (State which, all or none.)					
Can user overlay or drape a photograph from					
an external source (e.g., digital camera) on	Yes, [10]	Yes, [10]	Yes, [10]	No	No
cloud or elements extracted from cloud?					
Ability to register scans without the use of	NLA	NIA	NA	No	No
targets?	NA	NA	NA	NO	INO
Ability to place several clouds from different					
scans in coordinated 3D space using total					
station or GPS survey data that has been used	NA	NA	NA	No	No
to determine positions of scanner and					
alignment of scans?					
Analyze points in a cloud representing shapes	Vec (planes and				
such as planes, cylinders and spheres to	cylinders)	No	No	No	No
detect measurement outliers?	ey mider sj				
Ability to integrate scans with floor plans,					
engineering drawings of objects and	Ves all	Ves all	Ves all	No	No
surveyed information? (State which, all or	1 00, 411	100, 00	100, 001	110	110
none.)					
Automate decimation of points in selectable					
areas to make data files as compact as	NA	NA	NA	No	No
possible?					
Is fifting of lines, planes and shapes to cloud	Both	N/A	N/A	No	No
done manually or automatically, or both?					
- For automatic and manual fitting, what	T ,	37/4	37/4	27	N
techniques are used of available (e.g. least	Least squares	N/A	N/A	NO	NO
squares, taking average, etc.)?					
Additive to automatically track lines of limits	No	No	No	No	No
Ability to outomatically calculate and list					
Adding to automatically calculate and list					
anglinent of center file of shapes (such as a pipe) containing straight and curved	Yes, straight	No	No	No	No
segments such as elbows?					
Maximum number of points that can be					
loaded	N/A [13]	N/A [13]	N/A [13]	N/A	N/A [13]
Automatic removal of noise (e.g., cars on	37	37	NT.), T	N
road, vegetation, etc.)?	Yes	res	INO	NO	INO

Table 10. 2008 LiDAR Software Summary Sets 6 to 10 (Point of Beginning website).

Manufacturer	Leica Geosystems	Leica Geosystems	Leica Geosystems	Leica Geosystems	Leica Geosystems
Product	Leica CloudWorx for MicroStation	Leica CloudWorx for PDMS	Leica CloudWorx for Intergraph	Leica TruView FREE Web Viewer	Leica Cyclone II TOPO
			SmartPlant Review		
Rendering/CAD Model					
Generation/Viewing					
Does software automatically or manually					
generate or create CAD models or model					
segments from point clouds and other known	Yes, [11]	Yes, [9]	No	No	No
information? (Specify level of automation					
and intelligence.)					
Are items (CAD models such as pipes, steel,					
flanges, elbow) fit to the point cloud using	No	No [9]	No	No	No
standard object tables/catalogs?					
Create statistical quality assurance reports on	Yes	Yes	Yes	No	No
the modeled objects?					
Automatically compute, without user		27	27	27	N
interaction, a full 3D polygonal mesh (not	No	No	No	No	No
view-based) from a point cloud?	27). T	27	N	N.
Perform contour generation?	N0	NO	No	NO	NO
Perform volume calculation capabilities?	NO	NO	NO	NO	INO
Perform solid modeling (volume generation)	NT.). T	NT.	N	ŊŢ
based on user-defined lines, planes and other	NO	NO	NO	NO	NO
surfaces as bounds?					
Perform profile and cross-section generation	NT -	N T -	27-	N T-	Yes, via feature
along any cutting plane, failing of planes of	INO	INO	INO	INO	coding
Toat angiment?					77 1 1
have edge detection technology to determine	N T -	N T -	27-	N T-	Yes, edges, planes,
shanes?	INO	IN O	INO	INO	low, nign, painted and
Berform automatic extraction of standard					
shapes from cloud (e.g. pipe fittings	Vec (14]	Voc	Ves	No	No
structural steel members, etc.)?	1 65 (14]	165	1 65	INO	INO
Can user view cloud or generated shapes or					
models from any viewpoint in 3D?	Yes	Yes	Yes	No	Yes
Are fly-throughs or walk-throughs					
supported?	Yes	Yes	Yes	No	Yes
Have intelligent display of detail depending					
on scale of the view?	Yes	Yes	Yes	Yes	Yes
Can user select transparent/opaque surface					
for cloud and CAD shapes?	No	No	No	No	No
Which export formats are supported?					LandXML, Leica
	As MicroStation	As PDMS	As SmartPlant	N/A	DBX, Custom ASCII
Specify other measurement tools (e.g.,					
clearance, cut/fill, table of elevation	None	None	None	Delta from X,Y or Z	None
differences)					
Can the pointcloud be rendered with					
visualization effects (e.g., intensity mapping,	No	No	No	Yes	Yes
elevation mapping, shading, silhouette)?					
Can the software automatically detect scan	NI/A	NI/A	NI/A	NI/A	NI/A
targets?	INTA	19/24	1974	19/24	19/14
Miscellaneous					
Provide high-speed thumbnail views of					
scans, clouds, photographic images and	No	No	No	No	No
generated shapes?					
Can client/server system support multiple	Ves	Ves	Yes	Ves	No
users?	100	100	1 6.5	100	.10
Is client/server system supported to enable					
several clients contributing to a single	Yes, simultaneously	Yes, simultaneously	Yes, simultaneously	No	No
project?					

Table 10. 2008 LiDAR Software Summary Sets 6 to 10 (Point of Beginning website).- continued -

Manufacturer	Leica Geosystems	Leica Geosystems	Leica Geosystems	Leica Geosystems	Leica Geosystems
Product	Leica CloudWorx	Leica CloudWorx	Leica CloudWorx	Leica TruView	Leica Cyclone II
	for MicroStation	for PDMS	for Intergraph	FREE Web Viewer	TOPO
			Sm artPlant Review		
Other Features					
Describe	[15]	[16]	[16]	TruView is an easy to use, free web based point cloud viewer intended for non- sophisticated and occasional users to have easy access to point cloud data withouth the need for training	Cyclone II TOPO is an easy to learn and use application for CAD techs to feature code topographic maps from 3D point cloud data

Table 10. 2008 LiDAR Software Summary Sets 6 to 10 (Point of Beginning website).- continued -

Manufacturer	Maptek I-Site 3D	Maptek I-Site 3D	Maptek I-Site 3D	Riegl	Riegl USA
	Laser Imaging	Laser Imaging	Laser Imaging		_
Product	I-Site Studio 3.1	I-Site Forensic 2.0	I-Site Voidworks	RISCAN PRO	Phidias
Price (list by modules or components)	Contact Mantals I Sita	Contact Montals I	Z.U Contact Mantals I		
The (list by modules of components)	representative	Site representative	Site representative	\$8,750	\$7,500
Laser scanner brands and models from which	Maptek I-	Maptek I-	A A A A A A A A A A A A A A A A A A A		
data can be imported directly	Site/Riegl/Optech/Leic	Site/Riegl/Optech/Leic	Mapter 1- Site/MDL/Optech	All	All
	a/Z+F/MDL	a/Z+F/MDL	She/MDL/Opteen		
Operating systems supported (if one is	Windows Vista 64,	Windows Vista 64,			
prefetted, please state)	Windows XP x64, Windows Visto	Windows XP 64, Windows Visto	Windows XP,	Windows XP	MigraStation
	Windows XP.	Windows XP.	Windows 2000	Windows 2000 SP2	Witciostation
	Windows 2000, Linux	Windows 2000			
Minimum CPU requirement	2GHz	2GHz	2GHz	1.5ghz Pentium 4	2.5 ghz
Minimum RAM required	1024 MB	512 MB	512 MB	256mb Minimum;	2000 MB
	1024 1112	512 MD	512 MB	1024mb Maximum	2000 MID
Space required on hard disk to properly run	2010 D ED			700mb project	
application, including swap space, etc. (list in Mb)	2048 MB	1024 MB	512 MB	example; 40gb	3 GB
Other hardware requirements	Accelerated 3D	Accelerated 3D	Accelerated 3D	projects	
one na ona requirements	graphics, 3 button	graphics, 3 button	graphics, 3 button		No
	mouse	mouse	mouse		
Cloud Editing/Analysis					
Can features be defined with user-created	Yes	No	No	Yes	Yes
code libraries?					
(reactive codes exportable to CAD software?	Yes (DXF,DWG)	Yes (DXF,DWG)	Yes (DXF,DWG)	Yes	Yes
(speerly when software) Can user compare cloud or shapes fitted to					
clouds to plan or perform theoretical shape					
and interference checking? (State which, all	All	All	All	Yes	Yes
or none.)					
Ability to make measurements such as	Distances, angles,		Distances, angles,		
distances, angles, areas, volumes, of lines,	areas, volumes (cut,	Distances, angles,	areas, volumes (cut,	Yes	All
planes, snapes and other suffaces from	fill, 2.5D, 3D, 3D	areas	fill, 2.5D, 3D, 3D differential)		
Can user overlay or drane a photograph from	unterentiar).		unierentiar).		
an external source (e.g., digital camera) on	Yes, 4400 series	Yes, 4400 series	No	Yes	Yes
cloud or elements extracted from cloud?	scanner only.	scanner only.	1.0	1.00	1.00
Ability to register scans without the use of	Voz	Vag	Vez	Vez	Var
targets?	res	res	1 es	res	1 es
Ability to place several clouds from different					
scans in coordinated 3D space using total	37	37	37	77	37
to determine positions of scanner and	Yes	Yes	Y es	Yes	Y es
alignment of scans?					
Analyze points in a cloud representing shapes					
such as planes, cylinders and spheres to	Yes	Yes	No	Yes	Yes
detect measurement outliers?					
Ability to integrate scans with floor plans,					
engineering drawings of objects and	All (2D plans, 3D	All (2D plans, 3D	No	Yes	All
none.)	CAD models)	CAD models)			
Automate decimation of points in selectable					
areas to make data files as compact as	Yes	Yes	No (manual only)	Yes	Yes
possible?					
Is fitting of lines, planes and shapes to cloud	Both	Both	Manually	Yes	Both
done manually or automatically, or both?		200		1.60	
- For automatic and manual fitting, what	Least squares	Least squares	Least squares	Vez	Logat Canona
squares, taking average, etc.)?	distance ICP	distance ICP	distance, ICP	res	Least Squares
Ability to automatically track lines or limits				\$7	\$7
of areas by color or texture discrimination?	Yes	Yes	No	Yes	Yes
Ability to automatically calculate and list					
alignment of center line of shapes (such as a	No	No	No	Yes	Yes
pipe) containing straight and curved					
segments such as eloows?					

Table 11. 2008 LiDAR Software Summary Sets 11 to 15 (Point of Beginning website).

Manufacturer	Maptek I-Site 3D	Maptek I-Site 3D Laser Imaging	Maptek I-Site 3D Laser Imaging	Riegl	Riegl USA
Product	LSite Studio 3.1	Laste Forensic 2.0	L-Site Voidworks	RISCANPRO	Phidias
110uut	1 Site Staalo 3.1	1 SICC FOR CHISIC 2.0	2.0	MSCHUTRO	1 monas
Maximum number of points that can be	200 million	200 million	20 million	200,000,000	No limit
Automatic removal of noise (e.g., cars on	37	37	77	37	37
road, vegetation, etc.)?	Yes	Yes	Y es	Yes	Y es
Rendering/CAD Model					
Generation/Viewing					
Does software automatically or manually	Vec level of	Vec level of			
generate or create CAD models or model	automation is high for	automation is high for	Yes, level of		
segments from point clouds and other known	tonographic and	tonographic and	automation is high for	Yes	Yes
information? (Specify level of automation	irregular 3D surfaces	irregular 3D surfaces.	irregular 3D surfaces.		
and intelligence.)					
Are items (CAD models such as pipes, steel,					
flanges, elbow) fit to the point cloud using	No	No	No	Yes	Yes
standard object tables/catalogs?					
Create statistical quality assurance reports on	Yes	Yes	Yes	Yes	Yes
the modeled objects?					
Automatically compute, without user	V	Ver	NTe	Ver	N.
view based) from a point cloud?	res	res	INO	res	INO
New-based) from a point croud?	Vez	Vez	No	Vaa	Vaz
Perform volume calculation canabilities?	Vec	Vec	INU Vec	Vec	I es Vec
Perform solid modeling (volume generation)	105	105	165	165	1 65
hased on user-defined lines, planes and other	A 11	A 11	A11	Vec	Vec
surfaces as hounds?	711	All		105	1 05
Perform profile and cross-section generation					
along any cutting plane, family of planes or	Yes	Yes	Yes	Yes	Yes
road alignment?					
Have edge detection technology to determine					
boundaries of solids, planes and other	Yes	Yes	No	Yes	Yes
shapes?					
Perform automatic extraction of standard					
shapes from cloud (e.g. pipe fittings,	No	No	No	Yes	Yes
structural steel members, etc.)?					
Can user view cloud or generated shapes or	Vec	Vec	Vec	Vec	Vec
models from any viewpoint in 3D?	105	103	1 45	105	1 65
Are fly-throughs or walk-throughs	Ves	Ves	Ves	Ves	Ves
supported?					
Have intelligent display of detail depending	Yes	Yes	Yes	Yes	Yes
on scale of the view?					
Can user select transparent/opaque surface	Yes	Yes	Yes	Yes	yes
Which expect formate are supported?				4	
which export formats are supported?				Ascii, Crystalix, 3DD	
	24. 24	24. 24		with SOP, Point	
	sap, sav, ma, vimi,	dyf dwg dyb obi	vrml, dxf, dwg, dxb,	Dobuworks	
	00t dad tyt 3di	00t dad tyt 3di	obj, 00t, dgd, txt,	Wavefront VRMI	Multiple
	arch d ing ireg	arch d ing ireg	arch_d	PLV STL LAS	
	aren_a, jpg, neg	aren_a, jpg, neg		Pointcloud for	
				Autocad, XYZ.	
Specify other measurement tools (e.g.,				Point Readout:	
clearance, cut/fill, table of elevation	Many (1)	Many (1)	Many (1)	Altitude Read, Color	Multiple
differences)				& Intensity Read	1
Can the pointcloud be rendered with				-	
visualization effects (e.g., intensity mapping,	Yes	Yes	Yes	Yes	Yes
elevation mapping, shading, silhouette)?					
Can the software automatically detect scan	Vee	Vec	No	Vac	No
targets?	Tes	res	INU	res	INU
Miscellaneous					
Provide high-speed thumbnail views of					
scans, clouds, photographic images and	No	No	No	Yes	Yes
generated shapes?					
Can client/server system support multiple	Yes	No	No	Yes	No
users?	1.00	110	110	1.40	110

Table 11. 2008 LiDAR Software Summary Sets 11 to 15 (Point of Beginning
website). - continued –

Manufacturer	Riegl USA	Riegl USA/Phoscan	Spatial Integrated Systems Inc	Topcon Positioning Systems	Trimble
Product	RiScan PRO	Riegl Tool Suite	3 DIS - 3 Dimensional Imaging & Scanning	ScanMaster	RealWorks Survey
Miscellaneous					
Provide high-speed thumbnail views of scans, clouds, photographic images and generated shapes?	Yes	Yes	No	No	Yes
Can client/server system support multiple users?	Yes	Yes	No	No	No
Is client/server system supported to enable several clients contributing to a single project?	Yes	Yes	No	No	No
Other Features					
Describe	Yes			Integrated WiFi control	Station-based navigation - Image- based drawing and modeling - EasyProfile - Google Earth exports

Table 11. 2008 LiDAR Software Summary Sets 11 to 15 (Point of Beginning
website). - continued –

Manufacturer	Riegl USA	Riegl USA/Phoscan	Spatial Integrated Systems Inc	Top con Positioning Systems	Trimble
Product	RiScan PRO	Riegl Tool Suite	3 DIS - 3 Dimensional Imaging	ScanMaster	RealWorks Survey
Price (list by modules or components)	Included with the Scanner	\$9,750	Consult SIS	Contact local Topcon dealer	Contact Trimble dealer
Laser scanner brands and models from which data can be imported directly	Riegl	All	3 DIS 1500	Topcon	All (all brands can be imported via ASCII- based formats; Optimized for Trimble 3D scanners and Survey Equipments
Operating systems supported (if one is preferred, please state)	Microsoft	Windows XP Professional, Windows 2000 SP2	Windows XP	Windows XP	Windows 2000 / XP
Minimum CPU requirement	2.5 ghz	1.5ghz Pentium 4	Pentium 1.6 GH	2GHz	Pentium 4 2 Giga Hertz
Minimum RAM required	2000 MB	256mb Minimum; 1024mb Maximum	512 MB	1GB	1 GB
Space required on hard disk to properly run application, including swap space, etc. (list in Mb)	5 GB	700mb project example; 40gb projects	512 MB	Sufficient to store raw data	2 GB
Other hardware requirements	No		3D Graphic Card Recommended	Video Card w/DirectX 9.0c support	graphic card (minimum 128 MB)
Cloud Editing/Analysis					
Can features be defined with user-created code libraries?	No	Yes	No	Only individual coding	Yes
Feature codes exportable to CAD software? (specify which software)	Yes	Yes	AutoCad/Imageware	Yes via DXF format	Yes
Can user compare cloud or shapes fitted to clouds to plan or perform theoretical shape and interference checking? (State which, all or none.)	Yes	Yes	None	No	All
Ability to make measurements such as distances, angles, areas, volumes, of lines, planes, shapes and other surfaces from cloud? (State which, all or none.)	Yes	Yes	Yes	distances, angles, areas	All
Can user overlay or drape a photograph from an external source (e.g., digital camera) on cloud or elements extracted from cloud?	Yes	Yes	No	No	Yes (from internal scanner camera and external source - digital camera)
Ability to register scans without the use of targets?	Yes	Yes	Yes	Yes	Yes
Ability to place several clouds from different scans in coordinated 3D space using total station or GPS survey data that has been used to determine positions of scanner and alignment of scans?	Yes	Yes	Yes	Yes	Yes
Analyze points in a cloud representing shapes such as planes, cylinders and spheres to detect measurement outliers?	Yes	Yes	None	No	Yes
Ability to integrate scans with floor plans, engineering drawings of objects and surveyed information? (State which, all or none.)	Yes	Yes	None	Yes, all	All
Automate decimation of points in selectable areas to make data files as compact as possible?	Yes	Yes	No	Yes	Yes
Is fitting of lines, planes and shapes to cloud done manually or automatically, or both?	Manually	Yes	Both	Both	Both
- For automatic and manual fitting, what techniques are used or available (e.g. least squares, taking average, etc.)?	Least Squares and others	Yes	Least Squares	Least squares, best fit	Least squares
Ability to automatically track lines or limits of areas by color or texture discrimination?	Yes	Yes	No	No	Yes

Table 12. 2008 LiDAR Software Summary Sets 16 to 20 (Point of Beginning website).

Manufacturer	Riegl USA	Riegl USA/Phoscan	Spatial Integrated Systems Inc	Top con Positioning System s	Trimble
Product	RiScan PRO	Riegl Tool Suite	3 DIS - 3 Dimensional Imaging	ScanMaster	RealWorks Survey
Ability to automatically calculate and list			& Scanning		
alignment of center line of shapes (such as a pipe) containing straight and curved segments such as elbows?	Yes	Yes	No	No	No (see 3Dipsos)
Maximum number of points that can be loaded	No limit	200,000,000	CPU & RAM Dependent	128 million on 32 bit PC	depends on system limits
Automatic removal of noise (e.g., cars on road, vegetation, etc.)?	Yes	Yes	No	No	Yes
Rendering/CAD Model Generation/Viewing					
Does software automatically or manually generate or create CAD models or model segments from point clouds and other known information? (Specify level of automation and intelligence.)	No	Yes	No	No	Yes
Are items (CAD models such as pipes, steel, flanges, elbow) fit to the point cloud using standard object tables/catalogs?	No	Yes	No	No	No (see 3Dipsos)
Create statistical quality assurance reports on the modeled objects?	Yes	Yes	No	No	Yes
Automatically compute, without user interaction, a full 3D polygonal mesh (not view-based) from a point cloud?	Yes	Yes	No	No	Yes
Perform contour generation?	Yes	Yes	No	Yes	Yes
Perform volume calculation capabilities?	Yes	Yes	No	No	Yes
Perform solid modeling (volume generation) based on user-defined lines, planes and other surfaces as bounds?	No	Yes	No	Yes	Yes
Perform profile and cross-section generation along any cutting plane, family of planes or road alignment?	Yes	Yes	No	Yes	Yes
Have edge detection technology to determine boundaries of solids, planes and other shapes?	Yes	Yes	No	No	Yes
Perform automatic extraction of standard shapes from cloud (e.g. pipe fittings, structural steel members, etc.)?	No	Yes	No	No	Yes
Can user view cloud or generated shapes or models from any viewpoint in 3D?	Yes	Yes	Yes	Yes	Yes
Are fly-throughs or walk-throughs supported?	Yes	Yes	Yes	No recording	Yes
Have intelligent display of detail depending on scale of the view?	Yes	Yes	Yes	Yes	Yes (images)
Can user select transparent/opaque surface for cloud and CAD shapes?	No	Yes	Yes	Yes	No
Which export formats are supported?	Multiple	DGN, DWG, DXG, IGES, ACIS SAT, Parasolids, CGM, Step AP203/AP214, VRML World, STL, U3D	ASCII	DXF, CSV, PXA	dxf, dgn, asc, obj, kml, ptc etc.
Specify other measurement tools (e.g., clearance, cut/fill, table of elevation differences)	Multiple		Multiple Inspection Tools Available		Full inspection tools available
Can the pointcloud be rendered with visualization effects (e.g., intensity mapping, elevation mapping, shading, silhouette)?	Yes	Yes	Yes	Yes	Yes, all
Can the software automatically detect scan targets?	Yes	Yes	Yes	No	Yes

Table 12. 2008 LiDAR Software Summary Sets 16 to 20 (Point of Beginning
website). - continued –

Manufacturer	Riegl USA	Riegl USA/Phoscan	Spatial Integrated Systems Inc	Topcon Positioning Systems	Trimble
Product	RiScan PRO	Riegl Tool Suite	3 DIS - 3 Dimensional Imaging & Scanning	ScanMaster	RealWorks Survey
Miscellaneous					
Provide high-speed thumbnail views of scans, clouds, photographic images and generated shapes?	Yes	Yes	No	No	Yes
Can client/server system support multiple users?	Yes	Yes	No	No	No
Is client/server system supported to enable several clients contributing to a single project?	Yes	Yes	No	No	No
Other Features					
Describe	Yes			Integrated WiFi control	Station-based navigation - Image- based drawing and modeling - EasyProfile - Google Earth exports

Table 12. 2008 LiDAR Software Summary Sets 16 to 20 (Point of Beginning
website). - continued –

		website).
Manufacturer	Trimble	Z+F UK LTD
Product	LASERGen	LFM Software
Price (list by modules or components)	\$9000 Subscription Plan	POA
Laser scanner brands and models from which	All	IMAGER 5003 &
data can be imported directly		IMAGER 5006 & All scanners via ascii
Operating systems supported (if one is preferred, please state)	Windows NT - XPPro	Windows 2000, NT, XP
Minimum CPU requirement	1 gig	2.5GHz processor
Minimum RAM required	512	1GB RAM
Space required on hard disk to properly run	Based on project	A small 30-60GByte
application, including swap space, etc. (list in Mb)		
Other hardware requirements		GeForce graphics card 128M memory
Cloud Editing/Analysis		
Can features be defined with user-created code libraries?	Yes	No
Feature codes exportable to CAD software? (specify which software)	Yes	Direct pointcloud links to: AutoCAD, Smart Plant Review, PDS, PDMS, Microstation
Can user compare cloud or shapes fitted to clouds to plan or perform theoretical shape and interference checking? (State which, all or none.)	Yes	Yes, interference checking
Ability to make measurements such as distances, angles, areas, volumes, of lines, planes, shapes and other surfaces from cloud? (State which, all or none.)	Yes	Yes, distances and 3D model generation
Can user overlay or drape a photograph from an external source (e.g., digital camera) on cloud or elements extracted from cloud?	Yes	Yes
Ability to register scans without the use of targets?	Yes	Yes
Ability to place several clouds from different scans in coordinated 3D space using total station or GPS survey data that has been used to determine positions of scanner and alignment of scans?	Yes	Yes
Analyze points in a cloud representing shapes such as planes, cylinders and spheres to detect measurement outliers?	Yes	Yes
Ability to integrate scans with floor plans, engineering drawings of objects and surveyed information? (State which, all or none.)	Yes	Yes
Automate decimation of points in selectable areas to make data files as compact as possible?	Yes	Yes
Is fitting of lines, planes and shapes to cloud done manually or automatically, or both?	Both	Both
- For automatic and manual fitting, what techniques are used or available (e.g. least squares, taking average, etc.)?	least squares & Orthoganl Regression	Best fit
Ability to automatically track lines or limits	Yes	No
Ability to automatically calculate and list alignment of center line of shapes (such as a ojpe) containing straight and curved segments such as elbows?	Yes	Yes
Maximum number of points that can be loaded	Unlimited	limited by PC memory
Automatic removal of noise (e.g., cars on road, vegetation, etc.)?	Yes - Rules based	Yes

Table 13. 2008 LiDAR Software Summary Sets 21 to 22 (Point of Beginning website).

Manufacturer	Trimble	Z+F UK LTD
Product	LASERGen	LFM Software
Rendering/CAD Model	EMBERGU	
Generation/Viewing		
Does software automatically or manually	Automated	Ves semi/automatic
generate or create CAD models or model	T MIOINWOU	Level of intelligence
segments from point clouds and other known		depends on target
information? (Specify level of automation		CAD package
and intelligence.)		
Are items (CAD models such as pipes, steel,	Ves	Ves
flanges, elbow) fit to the point cloud using		
standard object tables/catalogs?		
Create statistical quality assurance reports on	Yes	Yes
the modeled objects?		
Automatically compute, without user	No	Yes
interaction, a full 3D polygonal mesh (not		
view-based) from a point cloud?		
Perform contour generation?	Yes	No
Perform volume calculation capabilities?	Yes	No
Perform solid modeling (volume generation)	Yes	Yes
based on user-defined lines, planes and other		
surfaces as bounds?		
Perform profile and cross-section generation	Yes	Yes
along any cutting plane, family of planes or		
road alignment?		
Have edge detection technology to determine	Yes	No
boundaries of solids, planes and other		
shapes?		
Perform automatic extraction of standard	Yes	Yes
shapes from cloud (e.g. pipe fittings,		
structural steel members, etc.)?		
Can user view cloud or generated shapes or	Yes	Yes
models from any viewpoint in 3D?		
Are fly-throughs or walk-throughs	Yes	Yes
supported?	37	37
Have intelligent display of detail depending	Yes	Yes
on scale of the view?	37	37
Can user select transparent/opaque surface	res	res
Which expect formate are supported?	All stop dond formats	oois rondorin a
Specify other mercurement tools (e.g.	Too monu to list	acts rendering
clearance cut/fill table of elevation	100 many to fist	
differences)		
Can the pointcloud be rendered with	Vec	Vec
visualization effects (e.g. intensity mapping	105	105
elevation mapping, shading, silhouette)?		
Can the software automatically detect scan	Ves	Ves
targets?	1.00	1.00
Miscellaneous		
Provide high-speed thumbnail views of	Yes	Yes
scans, clouds, photographic images and		
generated shapes?		
Can client/server system support multiple	yes	Yes
users?	,	
Is client/server system supported to enable	Yes	Yes
several clients contributing to a single		
project?		
Other Features		
Describe	Multi-Platform	Bubble view support

Table 13. 2008 LiDAR Software Summary Sets 21 to 22 (Point of Beginning
website). - continued –

Table 14. 2008 LiDAR Software Summary Survey Notes (Point of Beginning website).

Surve	y Notes		
1	3rdTech	SceneVision-3D	Includes additional features for forensics - "Viewpoints", blood spatter trajectory calculation, hi-resolution insets.
2	kubit USA	PointCloud 3.2 /	trial version is available
3	Leica Geosystems	Leica Cyclone Family of Software [1]	1. Suite of 7 modules: Cyclone-SCAN; -REGISTER; -MODEL; -SURVEY; -SERVER, PUBLISHER, VIEWER Pro 2. Contact Leica Representative 3. All brands/makes can be imported via ASCII-based formats; these brands/makes can be imported natively: Leica HD S2500/HDS3000/HDS4500/ScanStation; Z+F - Imager; Riegl; 5003 (ZFS,ZFC); Riegl (3DD). 4. Ethernet adapter for licensing; keyboard; mouse or other pointing device 5. Can use images from internal camera on Leica scanners or any external camera 6. Automatic: Region Grow modeling tools; manual modeling tools; ability to apply attributes to modeled elements. 7. DXF, COE (DWG, DGN), ASCII (XYZ, SVY, PTS, PTX, TXT, Customized format) 8. 130 MB static footprint; swap dependent on size of point cloud and operation. 9. Using CAD tools. 10. From Cyclone 11. Automatic: Region Grow modeling tools; manual modeling tools; ability to use intelligent CAD tools. 12. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the- fly. Supports multiple windows. Multi-threaded; supports multiple processors.Has 64-bit data engine and virtual 64-bit graphics engine.Data stored in databases. 13. Cyclone based applications could load approx 40 million points at a time if required but the management system dynamically loads all necessary points real-time and never approaches that max 14. Semi-automatic; cylinders,planes. 15. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the-fly. Supports multiple windows. Multi-threaded; supports multiple processors.Has 64-bit data engine and virtual 64-bit graphics engine. Data stored in databases. 16. Users can place D-Points along pipe run defined by cloud and model pipes in place via D-Points inside PDMS 17. Using cloud-to-cloud registration on data from any scanner and/or via "free stationing" and traversing using scan data from
4	Leica Geosystems	Leica CloudWorx for AutoCAD (Basic and Pro versions)	1. Suite of 7 modules: Cyclone-SCAN; -REGISTER; -MODEL; -SURVEY; -SERVER, PUBLISHER, VIEWER Pro 2. Contact Leica Representative 3. All brands/makes can be imported via ASCII-based formats; these brands/makes can be imported natively: Leica HDS2500/HDS3000/HDS4500/ScanStation; Z+F - Imager; Riegl; 5003 (ZFS,ZFC); Riegl (3DD). 4. Ethernet adapter for licensing; keyboard; mouse or other pointing device 5. Can use images from internal camera on Leica scanners or any external camera 6. Automatic: Region Grow modeling tools; manual modeling tools; ability to apply attributes to modeled elements. 7. DXF, COE (DWG, DGN), ASCII (XYZ, SVY, PTS, PTX, TXT, Customized format) 8. 130 MB static footprint; swap dependent on size of point cloud and operation. 9. Using CAD tools. 10. From Cyclone 11. Automatic: Region Grow modeling tools; ability to use intelligent CAD tools. 12. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the- fly. Supports multiple windows. Multi-threaded; supports multiple processors.Has 64-bit data engine and virtual 64-bit graphics engine.Data stored in databases. 13. Cyclone based applications could load approx 40 million points at a time if required but the management system dynamically loads all necessary points real-time and never approaches that max 14. Semi-automatic; cylinders,planes. 15. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the-fly. Supports multiple windows. Multi-threaded; supports multiple processors. Has 64-bit data engine and virtual 64-bit graphics engine. Data stored in databases. 16. Users can place D-Points along pipe run defined by cloud and model pipes in place via D-Points inside PDMS 17. Using cloud-to-cloud registration on data from any scanner and/or via "free stationing" and traversing using scan data from Leica ScanStation
5	Leica Geosystems	Leica CloudWorx for MicroStation	1. Suite of 7 modules: Cyclone-SCAN; -REGISTER; -MODEL; -SURVEY; -SERVER, PUBLISHER, VIEWER Pro 2. Contact Leica Representative 3. All brands/makes can be imported via ASCII-based formats; these brands/makes can be imported natively: Leica HD S2500/HDS3000/HDS4000/RSanStation; Z+F - Imager; Riegl; 5003 (ZFS,ZFC); Riegl (3DD). 4. Ethernet adapter for licensing; keyboard; mouse or other pointing device 5. Can use images from internal camera on Leica scanners or any external camera 6. Automatic: Region Grow modeling tools; manual modeling tools; ability to apply attributes to modeled elements. 7. DXF; COE (DWG, DGN), ASCII (XYZ, SVY, PTS, PTX, TXT, Customized format) 8. 130 MB static footprint; swap dependent on size of point doud and operation. 9. Using CAD tools. 10. From Cyclone 11. Automatic: Region Grow modeling tools; manual modeling tools; ability to use intelligent CAD tools. 12. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the- fly. Supports multiple windows. Multi-threaded; supports multiple processors:Has 64-bit data engine and virtual 64-bit graphics engine.Data stored in databases. 13. Cyclone based applications could load approx 40 million points at a time if required but the management system dynamically loads all necessary points real-time and never approaches that max 14. Semi-automatic; cylinders,planes. 15. Clouds are not confined/restricted on a per-scan basis. Engine supports multiple windows. Multi-threaded, supports multiple processors. Has 64-bit data engine and virtual 64-bit graphics engine. Data stored in databases. 15. Clouds are not confined/restricted on a per-scan basis. Engine supports multiple windows. Multi-threaded, supports multiple processors. Has 64-bit data engine and virtual 64-bit graphics engine. Data stored in databases. 16. Users can place D-Points along pipe run defined by cloud and model pipes in place via D-Points inside PDMS 17. Using cloud-to-c

Table 14. 2008 LiDAR Software Summary Survey Notes (Point of Beginning
website). - continued –

Surve	y Notes			
6	Leica Geosystems	Leica CloudWorx for PDMS	1. Suite of 7 modules: Cyclone-SCAN; -REGISTER; -MODEL; -SURVEY; -SERVER, PUBLISHER, VIEWER Pro 2. Contact Leica Representative 3. All brands/makes can be imported via ASCII-based formats; these brands/makes can be imported natively: Leica HDS2500/HDS3000/HDS4500/ScanStation; Z+F - Imager; Riegl; 5003 (ZFS,ZFC); Riegl (3DD). 4. Ethernet adapter for licensing; keyboard; mouse or other pointing device 5. Can use images from internal camera on Leica scanners or any external camera 6. Automatic: Region Grow modeling tools; manual modeling tools; ability to apply attributes to modeled elements. 7. DXF, COE (DWG, DGN), ASCII (XYZ, SVY, PTS, PTX, TXT, Customized format) 8. 130 MB static footprint; swap dependent on size of point cloud and operation. 9. Using CAD tools. 10. From Cyclone 11. Automatic: Region Grow modeling tools; ability to use intelligent CAD tools. 12. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the- fly. Supports multiple windows. Multi-threaded; supports multiple processors.Has 64-bit data engine and virtual 64-bit graphics engine.Data stored in databases. 13. Cyclone based applications could load approx 40 million points at a time if required but the management system dynamically loads all necessary points real-time and never approaches that max 14. Semi-automatic; cylinders,planes. 15. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the-fly. Supports multiple windows. Multi-threaded; supports multiple processors. Has 64-bit data engine and virtual 64-bit graphics engine. Data stored in databases. 16. Users can place D-Points along pipe run defined by cloud and model pipes in place via D-Points inside PDMS 17. Using cloud-to-cloud registration on data from any scanner and/or via "free stationing" and traversing using scan data from Leica ScanStation	
7	Leica Geosystems	Leica CloudWorx for Intergraph SmartPlant Review	1. Suite of 7 modules: Cyclone-SCAN; -REGISTER; -MODEL; -SURVEY; -SERVER, PUBLISHER, VIEWER Pro 2. Contact Leica Representative 3. All brands/makes can be imported via ASCII-based formats; these brands/makes can be imported natively: Leica HD S2500/HDS3000/HDS4500/ScanStation; Z+F - Imager; Riegl; 5003 (ZFS,ZFC); Riegl (3DD). 4. Ethernet adapter for licensing; keyboard; mouse or other pointing device 5. Can use images from internal camera on Leica scanners or any external camera 6. Automatic: Region Grow modeling tools; manual modeling tools; ability to apply attributes to modeled elements. 7. DXF; COE (DWG, DGN), ASCII (XYZ, SVY, PTS, PTX, TXT, Customized format) 8. 130 MB static footprint; swap dependent on size of point cloud and operation. 9. Using CAD tools. 10. From Cyclone 11. Automatic: Region Grow modeling tools; manual modeling tools; ability to use intelligent CAD tools. 12. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the fly. Supports multiple windows. Multi-threaded; supports multiple processors.Has 64-bit data engine and virtual 64-bit graphics engine.Data stored in databases. 13. Cyclone based applications could load approx 40 million points at a time if required but the management system dynamically loads all necessary points real-time and never approaches that max 14. Semi-automatic; cylinders,planes. 15. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the-fly. Supports multiple windows. Multi-threaded; supports multiple processors.Has 64-bit data engine and virtual 64-bit graphics engine. Data stored in databases. 16. Users can place D-Points along pipe run defined by cloud and model pipes in place via D-Points inside PDMS 17. Using cloud-to-cloud registration on data from any scanner and/or via "free stationing" and traversing using scan data from Lei	
8	Leica Geosystems	Leica TruView FREE Web Viewer	1. Suite of 7 modules: Cyclone-SCAN; -REGISTER; -MODEL; -SURVEY; -SERVER, PUBLISHER, VIEWER Pro 2. Contact Leica Representative 3. All brands/makes can be imported via ASCII-based formats; these brands/makes can be imported natively: Leica HDS2500/HDS3000/HDS4500/ScanStation; Z+F - Imager; Riegl; 5003 (ZFS,ZFC); Riegl (3DD). 4. Ethernet adapter for licensing; keyboard; mouse or other pointing device 5. Can use images from internal camera on Leica scanners or any external camera 6. Automatic: Region Grow modeling tools; manual modeling tools; ability to apply attributes to modeled elements. 7. DXF, COE (DWG, DGN), ASCII (XYZ, SVY, PTS, PTX, TXT, Customized format) 8. 130 MB static footprint; swap dependent on size of point cloud and operation. 9. Using CAD tools. 10. From Cyclone 11. Automatic: Region Grow modeling tools; ability to use intelligent CAD tools. 12. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the- fly. Supports multiple windows. Multi-threaded; supports multiple processors: Has 64-bit data engine and virtual 64-bit graphics engine. Data stored in databases. 13. Cyclone based applications could load approx 40 million points at a time if required but the management system dynamically loads all necessary points real-time and never approaches that max 14. Semi-automatic; cylinders, planes. 15. Clouds are not confined/restricted on a per-scan basis. Engine supports billions of points in a single dataset with interactive performance. Limit box can be changed on-the-fly. Supports multiple windows. Multi-threaded; supports multiple processors. Has 64-bit data engine and virtual 64-bit graphics engine. Data stored in databases. 16. Users can place D-Points along pipe run defined by cloud and model pipes in place via D-Points inside PDMS 17. Using cloud-to-cloud registration on data from any scanner and/or via "free stationing" and traversing using scan data from Leica ScanStation </th	
9	Maptek I-Site 3D Laser Imaging	I-Site Studio 3.1	(1) Distance from surface, surface areas, 3D extents, angular extents, chained linear distance, point to line/plane distance, line to line/plane angle, cut/fill volumes in 2.5D and 3D, centroids (geometric and intensity weighted), alignment residual errors (plane and feature fitting). (2) Media quality AVI generation, ultra high resolution screen capture, powerful easy-to-use survey location features, instant photo-rendering (4400 series scanners), advanced surface generation and update tools, utilizes x64 processors and multi-core systems, intuitive 3D environment, easy to set-up, learn and use.	
10	Maptek I-Site 3D Laser Imaging	I-Site Forensic 2.0	(1) Surface areas, 3D extents, angular extents, chained linear distance, point to line/plane distance, line to line/plane angle, centroids (geometric and intensity weighted), alignment residual errors (plane and feature fitting). (2) Standard crime scene mark-up and analysis tools, scan authenticity verification, media quality AVI generation, ultra high resolution screen capture, powerful easy-to-use survey location features, instant photo-rendering (4400 series scanners), intuitive 3D environment, simple installation.	
Survey Notes				
--------------	-----------------------------------	----------------------	---	--
11	Maptek I-Site 3D Laser Imaging	I-Site Voidworks 2.0	 (1) Surface areas, 3D extents, chained linear distance, point to line/plane distance, line to line/plane angle, cut/fill volumes in 2.5D and 3D, centroids (geometric and intensity weighted), alignment residual errors (feature fitting). (2) Easy to install and upgrade, easy to learn and use, intuitive 3D environment. 	
12	Riegl USA	Phidias	This also operates as a close range photogrammetry software	
13	Trimble	Real Works Survey	Station-based navigation provides new productive opportunities to exploit overlaid image and point cloud data. Drawing and modeling can now be performed using image data directly. EasyProfile automatically extracts natural features in a point cloud and generates associated profiles/lines to be exported in CAD packages. KML file generation allows locating of models directly in Google Earth.	
14	Trimble	LASERGen	AVEVA PDMS AVEVA Review Autodesk AutoCAD 2002 - 2007 Bentley Systems, Inc. SE/J/V8/XM Intergraph PDS Intergraph SmartPlant Review LASERGen Viewer - 3D and Image viewer	
15	Z+F UK LTD	LFM Software	LFM Server supports import of point cloud into standard CAD Packages, to allow users to work in their most familiar environment.	

Table 14. 2008 LiDAR Software Summary Survey Notes (Point of Beginning
website). - continued –

APPENDIX C – SPLIT FX BEST PRACTICES

EXTRACTING ROCK MASS CHARACTERIZATION INFORMATION (SPLIT FX TIPS)

At the present time, the only point cloud processing package that has a number of built-in features for extracting rock mass characterization information is Split FX. Based on using the software for a number of years, some best practices are given below.

Automatic Extraction of Fracture Planes.

In general, the automatic fracture finder (find patches menu item) can do a better job of finding fractures than going through the point cloud by hand (and much faster). However, the settings should be optimized so that 1) a large number of fractures are extracted, and 2) at least initially, only fractures with a high degree of planarity (R^2 of best-fit plane through the points greater than about 0.9) are extracted. Typical settings to achieve this are shown in Figure 26. Requiring initially that the automatically extracted fractures have a high degree of planarity eliminates unwanted patches, such as patches formed from part of an excavated slope, due to a portion of the rock face coincidentally satisfying the flatness criterion. In particular, for a trim blasted slope, not requiring a high degree of planarity can cause the entire slope to be selected as a fracture.

Extracting Rough Fractures

To delineate rough fractures, the recommended approach is change the filter settings to allow fractures with a lower best-fit R^2 to be accepted, and to pick out these fracture manually (after finding all the smooth fractures automatically).

Stereonet Plotting

It is recommended that when plotting fracture poles extracted from LiDAR data, always weight by fracture area. Traditionally this is not done, because fracture area is typically not measured along with orientation in traditional site characterization. Also, in traditional site characterization, strike and dips are generally only taken on large fractures to begin with (area greater than 1 m³). An example of stereonets with and without weighting, including data collected with a traditional scanline, is shown in Figure 27.

APPENDIX C – SPLIT FX BEST PRACTICES

	Find Patches Parameters
Mesh Parameters Image: Spacing imag	✓ Delete existing patches Minimum patch size 4 [mesh triangles] Maximum neighbor angle 10 [degrees] ✓ Enable point filter Filter Level Low High ✓ Exclude noisy patches Exclude Exclude Exclude
OK Cancel	OK Cancel
Stereonet Style Pat Enable patch dis Smile 1.xyz Pole markers Marker style Size is a fun C Autoscale	ch Display Contouring Sets play
	OK Cancel Apply Help

Figure 26. Screen Capture. Recommended Split FX settings for mesh generator, patch finder, and stereonet plotting, for a scan of Mt. Lemmon Highway near Milepost 8.

Fracture Tracing on Digital Images (Including Draped Photos)

At the present time, most automatic edge detectors are not able to properly delineate fracture traces, at least without extensive parameter "tuning" or post editing. Therefore, it is recommended to trace the fractures by hand. This only takes a few minutes for each digital image of interest.

Complete .FX File For Each Site

A Split FX file (.fx file format) can store multiple point clouds, draped or undraped digital images, difference point clouds, joint set information, field notes, etc. It is a complete data base

Figure 27. Schematics. Comparison between plotting poles with (left) and without (center) "weight-by-area". Weighting by area results in a much better comparison with standard fracture mapping (right).

for a site that can be updated as additional scans are made (to look at rockfall, for example). It is recommended that an .fx file containing all this information is made for each site, as it is a good way to organize the data.